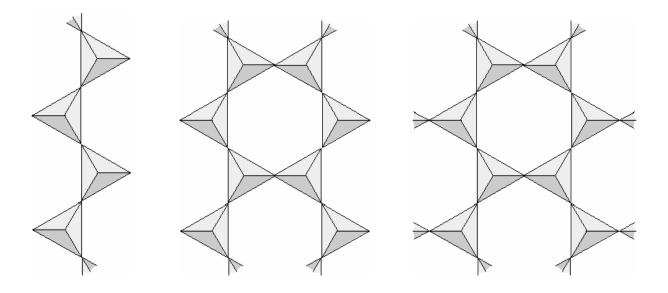

Excercises - part I "Solid State Chemistry"-

1) General aspects of the solid state.

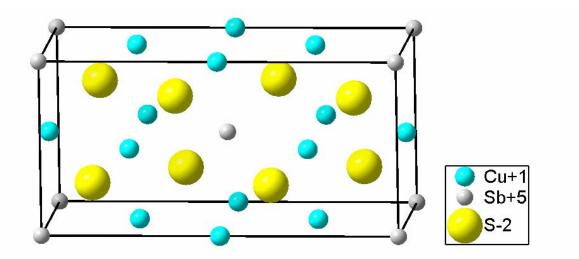
- a) Explain the different degrees of structural order in solids
- b) How is the radius of an ion determined following the procedure of Pauling ?
- c) What is the main feature of structures with occupancy factors smaller than 1.0?
- d) Characterize the terms lattice motif and structure

2) Concept of unit cell and structures

a) Sketch the primitive unit cell of the following 2D structures

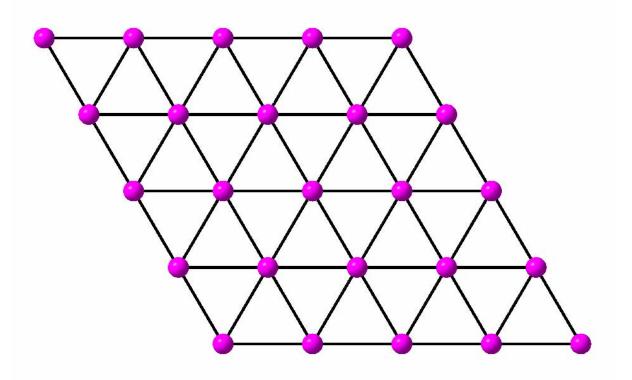

- b) Explain the term crystal system
- c) Numerate restrictions concerning unit cell axes and angles of the crystal systems

3) Atomic coordinates, counting of atoms


- a) The atoms (A, B and C) of a cubic structure are located on : 0¹/₂0 (A), ¹/₂¹/₂0 (B) and 000 (C). Sketch the unit cell
- b) Determine the composition of a crystal with this structure

4) Composition of crystals

a) Determine the composition of the following fragments (Si-O-partial structure of silicates)



b) Determine the composition of the following superstructure of the Sphalerite type

5) Structure of metals, close packing in structures

 a) The following image (see next page) represents a top view of a close packed layer of atoms. Mark and specify the positions of the atoms in the neighbored and next nearest neighbored layer for a CCP and HCP arrangement

- b) Give one example for a metal crystallizing in CCP, HCP, BCC and in an own structure type, respectively
- c) How many close packed structures exist? Give reasons

6) Holes in close packed structures, concept of polyhedra

- a) Sketch the positions of OH and TH in a FCC arrangement
- b) Give one example for a cubic structure with OH and TH completely filled
- c) Is there any hexagonal analog to the structure described in b? Give reasons
- d) Characterize the term optimum radius ratio cf. Pauling rule no. 1

7) Basic structure types: Sphalerite

- a) The structure of Sphalerite and cubic diamond are related. Describe and sketch this relationship
- b) What are the most important properties of Sphalerite type structures?
- c) Give two examples for binary Sphalerite type structure (except ZnS)

8) More complex structures: Perovskite, Spinel, Zeolites

- a) Sketch the unit cell of a cubic Perovskite-type structure
- b) Numerate applications of Perovskite type compounds
- c) Describe the structure of normal and inverse Spinel type structures.

- d) Give one example for naturally occurring normal and inverse Spinel type compounds, respectively
- e) Specify the general formula of Zeolites. Explain the fundamental structural properties of Zeolites

9) Intermetallics

- a) Describe the structure of solid solutions. Numerate the prerequisites for the formation of a solid solution
- b) Sketch the unit cell of CuZn, CuAu

10) Synthesis

- a) Numerate the general goals of solid state synthesis
- b) Explain the essential aspects of the "shacke and backe" procedure
- c) Why could the use of nanoparticles as educts be important for solid state synthesis?
- d) What kind of problems could occur during HT-synthesis