University of Siegen

Quaternary Lithium Seleno Halide Argyrodites

Ö. Gün, C. Reiner, H.J. Deiseroth Universität Siegen, Anorganische Chemie, 57068 Siegen 14.Vortragstagung der FG Festkörperchemie und Materialforschung

Universität Bayrenth 24.-26. September 2008

Introduction

Ternary argyrodite compounds with the general formula $A_{_{(12,n)}}BCh_{_6}(A=Cu,Ag;B=P,As,Ge,Si;Ch=S,Se,Te,n=charge of the cation B) are derived from the mineral <math display="inline">Ag_6GeS_6$ [1]. In many argyrodite type compounds it is possible to substitute a small part ($\delta \leq 1$) of the chalcogenides by halides resulting in quaternary formulas. The anionic substructure of these compounds form a tetrahedral close packing, which is topologically related to the arrangement of Mg and Cu atoms in the cubic Laves phase MgCu_2[2].

In the course of our investigations on lithium seleno argyrodites, we obtained quaternary compounds with the composition $Li_{7,6}PSe_{\epsilon_6}X_8$ (X= Cl, Br, I) and $Li_{7,6}AsSe_{\epsilon_6}I_8$.

Preparation

All experimental procedures were carried out in a glovebox under Argon atmosphere. In typical experiments carbon coated, evacuated and sealed quartz ampoules loaded with Li₂Se, P₃Se₅ and LiX (X= CI, Br, I) in stoichiometric proportions were heated for 5 days at 550 °C. For the preparation of Li_{7.5}AsSe_{6.5}I₀, elemental As and Se were used instead of P₃Se₅. After the reaction, the ampoules were cooled to room temperature with a rate of 30°C/h.

Characterization

All samples crystallize in the **cubic system** (Figure 1). The title compounds do not have a defined composition (the lattice constants range obtained from different samples are given in Table 1).

Table 1: Some properties of the compounds

com pou nd	color	lattice constants range obtained from different samples	lattice constants for the measured crystals
Li _{7-ð} PSe _{6-ð} Cl _ð Li _{7-ð} PSe _{6-ð} Br _ð Li _{7-ð} PSe _{6-ð} I _ð Li _{7-ð} AsSe _{6-ð} I _ð	orange orange orange dark nink	10.348-10.383 Å 10.379-10.395 Å 10.484-10.562 Å 10.647(1) Å (only one sample)	10.374 Å not measured 10.540 Å not measured

 $\begin{array}{l} \mbox{Figure 1: Sections of X-ray powder diagrams of the title compounds (from top to down); Li_{r,a}AsSe_{e,a}I_{s}, Li_{r,a}PSe_{e,a}I_{s}, L$

Thermal Measurements

The pure ternary compound Li₇PSe₆ crystallize at room temperature **orthorhombically.**

LT-Li,PSe, <u>168 °C</u>→ HT-Li,PSe, (cubic)

Because the title compounds crystallize at RT in the HT structures, LT DSC (for the phosphorus compounds) and LT single crystal X-ray measurement (only for $L_{i,z}$ PSe_{a,b}) were performed. **DSC experiments (from RT to -100 °C) did not indicate a phase transition**. During the LT single crystal measurement (at -50 °C, -100 °C and -150 °C) of the iodine compound the symmetry of the crystal did not change. **DTA measurements showed decomposition**

temperatures of the compounds (Table 2).

Table 2: Decomposition temperatures of the compounds

compound	decomposition temperature	powder pattern after DTA experiment
Li ₇₋₈ PSe ₆₋₈ Cl ₈	691 °C	some additional impurities
		from released educts
Li7-8PSe6-8Br8	670 °C	some additional impurities
		from released educts
Li7-8PSe6-8I8	683 °C	splitted

Figure 2: a. Section of X-ray powder diagrams of $Li_{7,s}PSe_{\varepsilon,s}O_s$ (left), and $Li_{7,s}PSe_{\varepsilon,s}I_s$ (right) before (bottom) and after (top) DTA experiments

(reflections resulting from Li₂Se are indicated). **b.** Optical and SEM images of Li_{7.6}PSe_{e.5}Cl₅ (left) and Li_{7.6}PSe_{e.5}l₅ (right).

Structure Description-NMR

Single crystals of Li_{7.8}PSe_{e.8}Cl₈, and Li_{7.8}PSe_{e.8}I₆ were measured on a STOE IPDS. In agreement with the powder investigations the reflections could be indexed cubically (**space group:** F43**m**). Although the quaternary title compounds are not isostructural with the unsubstituted Li₇PSe₆ [3], they are isostructural with the quaternary sulphur compounds [4]. Because of the **small X-ray contrast for Se and Br atoms**, the exact value of **δ can not be given** for the bromine compound.

In many quaternary argyrodites the chalcogen atoms occupy 2 of the 3 crystallographically independent positions (Ch1 and Ch2) and the halide ions are located on the third position (e.g. in Li_ePS_e] [4]). For another group of argyrodites a mixed occupancy of the chalcogen and halogen atoms on 2 of the 3 positions (Ch2 and Ch3) which are not connected directly to phosphorus is observed (e.g. Li_ePS_eBr [4]).

 $\begin{array}{l} Li_{\epsilon_{25}}PSe_{\epsilon_{56}}CI_{o_{31}} \text{ belongs to the second group. The group refinement Se/CI results in a chlorine ratio of about 15% on Ch2 and Ch3 positions while Ch1 is fully occupied by selenium (Figure 3). Unlike Li_{\epsilon_{25}}PSe_{\epsilon_{56}}CI_{o_{31}}, a mixed occupancy of chalcogen and halogen atoms is found only on the third selenium position (Ch3) in Li_{\epsilon_{25}}PSe_{\epsilon_{25}}h_{r_{25}}. Ch1 and Ch2 positions are fully occupied by selenium atoms. \end{array}$

 Table 3:
 Some crystallographic properties of the measured chlorine and iodine compounds.

compound	lattice constant	δ	resulting formula	position of halide atoms
$Li_{7\cdot\delta}PSe_{6\cdot\delta}Cl_{\delta}$	10.374 Å	0,31	Li _{6.69} PSe _{5.69} Cl _{0.31}	Ch2 and Ch3
Li ₇₋₈ PSe ₆₋₈ I ₈	10.540 A	0,75	Li _{6.25} PSe _{5.25} l _{0.75}	Ch3

Figure 3: Sections of the structures of Li_{6.66}PSe_{5.69}Cl_{0.31} (left) and Li_{6.25}PSe_{5.25}l_{0.75} (right) emphasizing the distribution of selenium and halide on the 3 crystallographically independent positions.

³¹P NMR studies were carried out for the phosphorous compounds (Figure 4). These signals give information about the **statistical distributions of neighborhoods**. The NMR measurements confirmed the results of the single crystal investigations.

Figure 4: ³¹P MAS-NMR spectra of the phosphorous compounds.

Literature

[1] Winkler, C.: Chem. Ber. 19 (1886) 210-211.

[2] Kuhs, W. F., Nitsche, R., Scheunemann, K.: Mat. Res. Bull. 14 (1979) 241-248.

[3] Francisco, R. H. P., Tepe, T., Eckert, H.: J. Solid State Chem. 107 (1993) 452-459.

[4] Deiseroth, H. J., Kong, S. T., Eckert, H., Vannahme, J., Reiner, C., Zaiß, T., Schlosser, M.: Angew. Chem. Int. Ed. 47 (2008) 755-758.

We would like to thank to the Deutsche Forschungsgemeinschaft (DFG) for the generous financial supply (DFG DE 365/12-1).