Li-Argyrodites : Li-ionic Conductivity by Impedance Spectroscopy

12th European Conference on Solid State Chemistry - ECSSC XII

20.-23.09.2009 Münster, Germany

V. Nickel¹, H. J. Deiseroth¹, K. Weichert², J. Maier²

University of Siegen

¹University of Siegen, Inorganic Chemistry I ²Max Planck Institute for Solid State Research, Stuttgart

Introduction:

The new ternary Lithium-containing Argyrodite with the formula Li₇PS₆ crystallizes at room temperature in the orthorhombic low temperature modification (isotypic to Cu_7PSe_6), in contrast to the quaternary halide-containing Lithium-Argyrodites $Li_7 PCh_6 X$ (Ch = S, Se; X = Cl, I: 1; Ch = O, X = Cl: 1), which crystallize in the cubic high temperature form of the Argyrodites (space group $F\overline{4}3m$)^[1]. The related silver- and copper Argyrodites are known for their good Cu/Ag-conductivities ^[2,3]. To compare the Li-conductivity of Argyrodites with different compositions, impedance spectroscopic and polarisation measurements were carried out.

Quaternary Iodoargyrodites Li_{7} PCh₆ I (Ch = S, Se, S/Se)

(a) DC : Ti / Li_{7} PSe₆ I / Ti

(b) AC : Ti / Li_{7} PCh₆ I / Ti (Ch = S, Se, 400 350 300 250 200

0.33

Figure 1:

(a, b) Symmetric cell for electrochemical measurements with (a) ion blocking or (b) electron blocking electrodes

(c) Schematic representation of a cell with a polycrystalline sample pellet and selective ion blocking electrodes and the resulting impedance spectrum

(d) Respective equivalent circuit with the active impedance elements (for electron blockage, Z^*_{diff} is in series with R_{σ}^{eon})

 C_{g} , C_{gb} : bulk-, grain boundary capacitance; R_{g} , R_{gb} : bulk-, grain boundary resistance; Z^{*}_{diff} : diffusion

Figure 3:

 $Li_{7-} P(S/Se)_{6-} I$

(a) Wagner-Hebb-polarisation measurements of Li_7 . PSe_6 . I with ion blocking cell arrangement. (b) Arrhenius plot of Li_{7-} PCh₆₋ I (Ch = S, Se, S/Se) with ion blocking Ti-electrodes.

*1 *10*-3

4 * 10-6

Figure 2:

(a, b) Wagner-Hebb-polarisation measurements of $Li_{7-}PCh_{6-}Cl$ (Ch = S (a), Se (b)) with ion blocking cell arrangement show fast polarisation due to movement of Li⁺. In the polarised state, the measured potential is only due to electronic conductivity.

(c) Arrhenius plot of $Li_{7-}PCh_{6-}Cl$ (Ch = O, S, Se) with ion blocking Ti-electrodes. For alternating current the kind of blocking is not important, the measured conductivity is the sum of ionic and electronic conductivity.

Figure 4:

(a) Wagner-Hebb-polarisation measurement of Li_7PS_6 with electron blocking cell arrangement. The potential is decreasing with time, maybe due to oxidation of free sulphur in the sample. (b) Arrhenius plot of Li_7PS_6 with ion blocking Pt-electrodes. After the second cycle the loose contacts between electrode / sample and between the grains become closer; the conductivity increases (Annealing effect).

Sample Preparation: Li-Argyrodites are highly hygroscopic, therefore all

preparative work was done under inert gas atmosphere in an Ar-filled glovebox. Out of the carefully ground samples cylindrical pellets (diameter $\phi = 6$ mm, thickness l = 0.5-3 mm) were prepared by either monoaxial pressing (pressure quaternary Argyrodites: 40kN; ternary Argyrodite: 20 kN) in stainless steel pressing tools or by isostatic pressing (pressure ternary and quaternary Argyrodtites: 250 kN). For ion blockage either discoidal Ti-foil or Ptpaste (coated on sample pellet, annealed for 1h at 500°C) were used as electrodes. For electron blocking the Lithium source was a LiAl alloy, the electron blocker (if present) was chosen to be a mixture of LiClO₄ in propylene carbonate with a PE-foil as separator between sample and liquid.

Conclusion:

Electrochemical analysis (impedance and polarisation measurements) show that the new ternary and quaternary Li-Argyrodites exhibit high ionic and low electronic conductivities. The highest Li⁺-conductivity is observed for the halogen-containing Selenoargyrodite (Li_{6.25}PSe_{5.25}I_{0.75}: around 10⁻⁵S/cm at room temperature and 10⁻³S/cm for 200°C) with an activation energy of 0.25 eV. The electronic conductivity (at T = 40°C) is 10⁻¹⁰ S/cm. Surprisingly also the ternary Li-Argyrodites show distinct ionic conductivities (Li_7PS_6 : around 10⁻⁶ S/cm), although crystallizing in the ordered low temperature modification.

Literature and Acknowledgement: [1] H.J. Deiseroth, S.T. Kong, H. Eckert, J. Vannahme, C. Reiner, T. Zaiß, M. Schlosser, Angew. Chem. 2008, 120, 767-770; [2] W.F. Kuhs, R. Nitsche, K. Scheunemann, Mat. Res. Bul. 1979, 14, 241-248; [3] R.B. Beeken, J.J. Garbe, J.M. Gillis, N.R. Petersen, B.W. Podoll, M.R. Stoneman, Phys. Chem. Sol. 2005, 66, 882-886. We would like to thank to the Deutsche Forschungsgesellschaft (DFG) for the generous financial supply (DFG DE 365/12-1).