
Infrared Spectroscopy (IR)

Vibrational spectroscopy is an energy sensitive method and is used to characterize compounds in terms of the strengths and number of the bonds present. One can get/detect:

- the presence of known compounds (finger print)
- the components of an unknown compound (functional groups)
- and thus a likely structure of a compound
- changes in the concentration of a species during reaction
- the properties of bonds (bond strength, force constants)

Since a bond in a molecule behaves like a spring, the harmonic/anharmonic oscillator model is used to describe the 3N-6 or 3N-5 different ways a nonlinear or linear molecule, respectively, consisting of N atoms can vibrate. These vibrational modes (normal modes) give rise to absorption bands of characteristic energies/frequencies/wave numbers, intensities, and widths (change of dipole moment required), which are detected and analyzed.

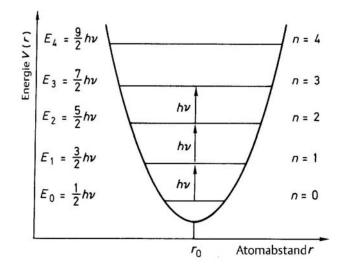
Vibrational energy levels in harmonic approximation

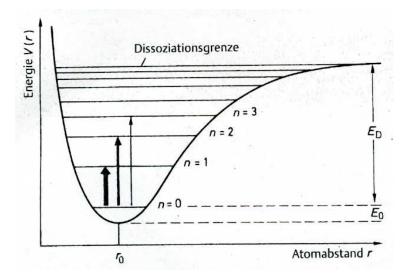
Please note that vibrations normally are more or less anharmonic

Vibrational levels in harmonic/anharmonic approximation

$$E_{\text{VIB}} = h v_{\text{osc}} \left(n + \frac{1}{2} \right) = \frac{h}{2\pi} \sqrt{\frac{k}{\mu}} \left(n + \frac{1}{2} \right)$$

$$n = 0, 1, 2, \dots \qquad \Delta n = \pm 1$$


$$\Delta E_{\text{VIB}} = E_{n+1} - E_n = h v_{\text{osc}}$$


$$n \qquad \text{Schwingungsquantenzahl}$$

$$h \qquad \text{Planck-Wirkungsquantum}$$

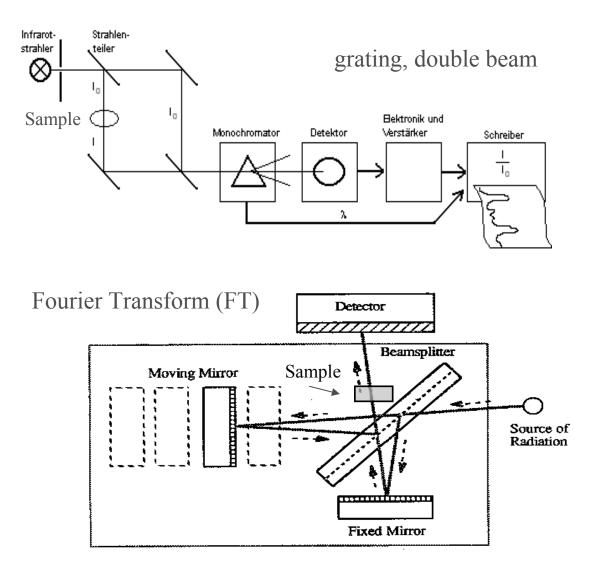
$$E_{\text{VIB}} \qquad \text{Schwingungsenergie} (\text{VIB von Vibration})$$

 $E_{VIB} = hv_{osc}(n + \frac{1}{2}) - h^2 v^2 / (4E_D) \cdot (n + \frac{1}{2})^2 (\Delta n = \pm 1, \pm 2, ...)$ In case of an anharmonic vibration, the distances of neighbouring levels become smaller with increasing n (the arrows symbolize transition probabilities and intensities.

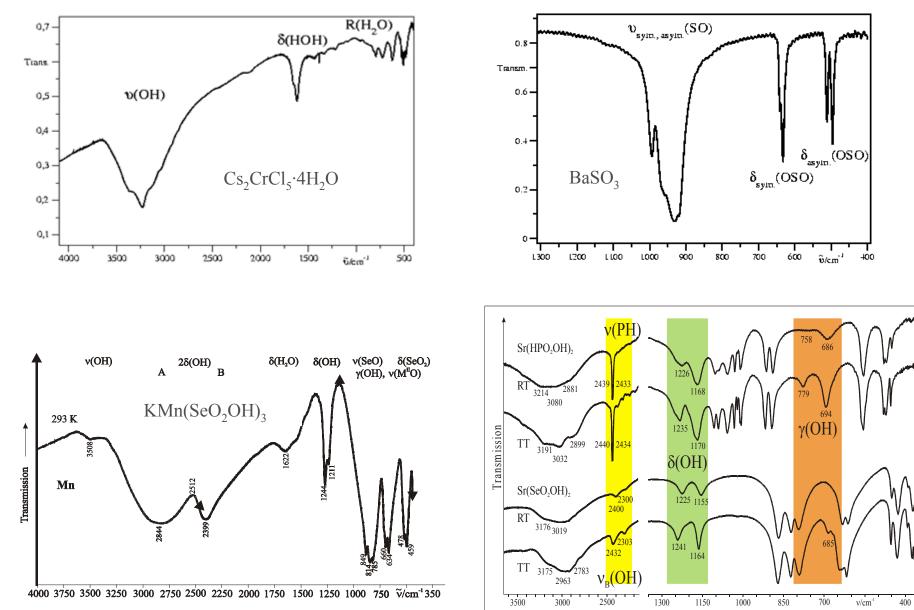
Potential curve of an harmonic oscillator (E_n: Vibrational levels, E₀: Zero point energy)

Potential curve of an anharmonic oscillator (E_0 : Zero point energy, E_D : Dissociation energy)

Normal modes of vibration 3N-6 modes (3N-5 if linear)


The three normal modes of H₂O and their wavenumbers

The four normal modes of (linear) CO₂


Typical wavenumbers of stretching/bending vibrations

"molecule"	stretching	bending
C - H	2800 - 3000	
N - N	3300 - 3500	
H ₂ O	3600 - 3000	1600
C = O	1700	
$\mathbf{C} = \mathbf{C}$	1600	
SO ₃ ²⁻	970 (v _s)	620 (γ)
	930 (v_{as})	470 (δ)

IR - Spectrometer

Examples

