4.1 Rules for constructing MOs

- 1) Draw AO energy level schemes on the left and right side
- 2) Construct the MO energy level scheme in the middle
- 3) The atomic core levels are similar in the molecule
- 4) Valence AOs, overlapping, of similar energy, of same symmetry, combine to yield shifted MO levels (in N₂ etc. 1s are core AOs!)
- 5) n AOs yield n MOs (the highest valence MO is sometimes missing!)
- 6) The lowest MO is below the lowest AO, the highest MO is even more above the highest AO (nonsymmetric splitting!)
- 7) s & p σ AOs on the left overlap with those on the right (s-p hybrids); p π AOs on the left overlap with those on the right, forming p π MOs
- 8) The MO shifts are the larger the larger the overlap and the more similar the AO energies; s-p mixing-promotion for C (B,N; little:Be,O)

Example: $2H \rightarrow H_2$ The lowered MO is bonding, the

strongly raised MO is antibonding

Here 1 σ bond, symbol: H – H

4.2 Homonuclear Diatomics

 $1\sigma(2sp)$

Examples

4.3 Notes

He₂ 2 LP; Li₂ 1 σ (weak:1e-½ σ bond stronger than 2e-1 σ bond); Be₂ secondary bond of 2 LP; B₂ two ½ π with parallel spins, 2 LP; C₂ 2 π , 2 LP (at similar energy 1½ π +½ σ); N₂ 2 π 1 σ 2LP; O₂ 1 π 1 σ 4LP; F₂ 1 σ 6LP; Ne₂ van der Waals attraction of 4+4 LP

 σ^2 σ^{*2} : 1 deloc. bonding & 1 deloc. antibonding MO is equivalent

to 2 localized nonbonding (one-center lone pair = LP) MOs; secondary bond for Be₂(s-p hybr.); none for He₂ π^2 : 1 electron each in a real π_x and π_y , or equivalently in a complex π_{+1} and π_{-1} orbital – density is cylindrical, 0 angular momentum, two ½ π bonds

 $\pi^4 \, \pi^{*2}$: 2 π bonds, two ½ π^* antibonds is equivalent to 1 π bond and 2 π lone pairs

s-p hybridization: SH_2 has two polar Sp/Hs bonds and 2s-LP, 2p-LP (=two 2sp-LPs =one cloud, not 2 'ears'): $S^{\delta-}$ 2s²2p^{4.4} 2H^{$\delta+$} 1s^{0.8} s-p promotion: CH_4 has 4 nonpolar C s^{.3}p^{.7} H s¹ bonds: C s^{1.2}p^{2.8}, C has 0.8 s \rightarrow p, because 2s and 2p overlap similarly with H1s

4.4 Heteronuclear and Polyatomic Molecules

The 3+1 delocalized canonical symmetry-adapted MOs of CH_4 can be linear-combined to yield 4 localized equivalent $C(s^{1.2}p^3)+H(s)$ MOs; in contrast to the VB assumption, the MO-SCF optimization gives a little more C2s 'population', since C2s is lower in energy than C2p and H1s.

In the case of XeF_2 the 3 AOs $Xe5p\sigma$ and left and right $F2p\sigma$ yield 3 canonical σ -MOs, 1 bonding, 1 nonbonding, 1 antibonding. They can be transformed into a Xe-LP and two polar $F \rightarrow Xe$ bonds: $F^{\delta} \rightarrow Xe^{2\delta^+} \leftarrow F^{\delta^-}$.

Compare Atkins, PC^2 §14 (orbitals are neither slim nor touching spheres! tails are bigger! $1s\sigma$ -MO at r=0 is smaller, etc.! But a few Figs. are correct)