Lecture: Solid State Chemistry

(Further spectroscopical methods, 8.6.06)

H.J. Deiseroth, SS 2006

Orders of magnitude in energy \rightarrow spectroscopic techniques

Fig. 4.6 Principal regions of the electromagnetic spectrum and the associated spectroscopic techniques

ESCA: Photoemission or Photoelectron spectroscopy

ESCA = <u>E</u>lectron <u>Spectroscopy for <u>C</u>hemical <u>A</u>nalysis</u>

ESCA: Photoemission or Photoelectron spectroscopy

ESCA: Photoemission or <u>Photoelectron</u> <u>Spectroscopy</u>

Exciting Radiation	Outcoming Radiation
UV (~ 20 eV) → <u>U</u> PS	electrons from occupied <u>valence</u> states
X-Ray (~ 10 keV) → <u>X</u> PS	electrons from (occupied) <u>core</u> states

-commercial laboratory based spectrometers (UHV-technique) are available but relatively <u>expensive and of limited versatility</u> !

- more promising for the future is the use of synchroton radiation: \rightarrow continuous spectrum of exciting radiation (UV \rightarrow X-Ray)
- <u>intensity</u> of <u>synchroton radiation</u> is <u>orders of magnitudes higher</u> !
 (e.g. <u>angle resolved detection</u> of outcoming radiation is possible
 <u>detection of "orbital shapes"</u>)

- polarization of synchroton radiation allows spin polarized experiments

ESCA: Photoemission or Photoelectron spectroscopy

analysis of the energy levels of electrons in molecules ("chemical shift")
 band structure of solids

Synchroton Storage Ring

Abb. 5: Die Leuchtdichte von DORIS im Vergleich zu einigen bekannten Strahlungsquellen. (Die Leuchtdichte ist die Zahl der Photonen, die pro Sekunde und Wellenlängenintervall in eine bestimmte Richtung abgestrahlt wird.)

EXAFS and XANES

Spectroscopical methods associated with specific physical effects at/near characteristical X-ray absorption edges:

EXAFS: <u>Extended X-Ray Absorption Fine Structure</u> XANES: <u>X-Ray Absorption Near Edge Structure</u> - tunable synchroton radiation in the X-Ray region necessary

Fig. 4.19 EXAFS spectrum of Cu. (From E. A. Stern, Sci. Amer., 234, 96, 1976)

Fig. 4.18 AEFS spectra of CuCl and CuCl₂ · 2H₂O. (From Chan, Hu and Gamble, J. Mol. Str., 45, 239, 1978)

Moessbauer Spectroscopy

 \rightarrow the nucleus of the specific isotope of an atom embdedded in a solid (e.g. ⁵⁷Fe) is excited by γ -rays emitted by an instable isotope of a neighbor element (e.g. ⁵⁷Co)

Moessbauer Spectroscopy

Fig. 4.27 Chemical shifts in iron-containing compounds. (From Bancroft, Mössbauer Spectroscopy, McGraw-Hill, 1973)

Fig. 4.28 Mössbauer spectrum of KFeS₂ (a) above and (b) below the Néel temperature. (From Greenwood, *Chem. Brit.*, 3, 56, 1967)

Two major informations from Moessbauer spectra:

a) "Chemical Shift" (not to be confused with the same term in NMR and ESCA)

 \rightarrow oxidation state

b) Hyperfine Splitting \rightarrow magnetic interactions