Chapter 4: Physical methods in Solid State Chemistry

- 4.1 Electromagnetic radiation
- 4.2 Microscopic techniques: OM, SEM, CTEM, HREM
- 4.3 X-ray diffraction: XRD, XRPD
- 4.4 Photoelectron spectroscopy: ESCA
- 4.5 X-ray absorption spectroscopy: EXAFS, XANES
- 4.6 Moessbauer spectroscopy
- 4.7 Impedance spectroscopy (ionic conductivity)
- 4.8 Magnetic measurements
- 4.9 Thermal analysis: TA, DTA, DSC, TG
- 4.10 Comparison of some techniques for structural studies

4. Physical methods in Solid State Chemistry

Physical methods in Solid State Chemistry must/ should/can be sensitiv with respect to the:

- Composition of a compound/molecule
- States/energies of spins, electrons, rotations, vibrations, atoms/molecules etc.
- States/energies of compounds/reactions
- Sites/positions of the atoms/ions/molecules etc.
- Extension etc.

Resulting in microscopic, spectroscopic, thermal, ... methods/techniques.

Most of the methods use electromagnetic radiation.

4.1 Electromagnetic Radiation: Characteristics	
tranversal waves, velocity $c_0 \approx 3 \cdot 10^8 \text{ m s}^{-1}$	
1. Energy (eV, kJ r	$mol^{-1})$
-frequency	ν ($\nu = c_0 / \lambda$; s ⁻¹ , Hz)
-wavelength	$λ$ ($λ = c_0 / ν$; Å, nm,, m,)
-wavenumber	\widetilde{v} ($\widetilde{v} = 1/\lambda = v/c_0$; cm ⁻¹ , Kaiser)
energy \sim	frequency $(E = h \cdot v)$ wavenumber $(E = h \cdot \tilde{v} \cdot c_o)$ wavelength ⁻¹ $(E = h \cdot c_o / \lambda)$
2. Intensity cr	$I \sim \vec{S} ^2 = \vec{E} \times \vec{H} $
3. Direction wa	avevector S_0
4. Phase phase φ Range of frequencies for structural analysis: 10 ⁶ -10 ²⁰ Hz, 10 ² -10 ⁻¹² m, 10 ⁻⁸ -10 ⁶ eV radio-, microwaves, infrared (IR), visible (VIS), ultraviolet (UV), X-ray, γ -ray ³	

Orders of magnitude in wavelength, frequency, energy, temperature

 $1 \text{ eV} = 1,602 \cdot 10^{-19} \text{ J} = 96,485 \text{ kJ mol}^{-1} = 8065,5 \text{ cm}^{-1}$

Orders of magnitude in wavelength, frequency, energy, temperature

7

4.1 Electromagnetic radiation: Origins and techniques

4.1 Electromagnetic radiation: Sources Radio waves/NMR

흥

Electromagnetic waves are produced (a.o.), when charges or charged or dipolar species are oscillating with frequencies in the respective range. For microwaves, the charges oscillate in a resonance or tank circuit, consisting of a capacitor with capacitance C and a coil with self-inductance L.

4.1 Electromagnetic radiation: Sources Microwave radiation

Schematic view of a magnetron for the production of microwaves (left) and the anode with an even number of anode vanes (right)

Principal circuit of a magnetron

Impulsmagnetron MI-189W (ca. 9 GHz) Bordradar, Russia

Magnetrons and Gyrotrons are diode-type electron tubes (~ 1-10 kV) with a trapezoid anode (*resonant cavities*) surrounded by permanent magnets producing an axial magnetic field. Under the combined influence of the electric and the magnetic field, the electrons are forced in a circular motion of travel to the anode resulting in electromagnetic radiation of 0.3 - 300 GHz.

ikon.net/d/nernst-brenner/n4st-1 Electromagnetic radiation: Sources IR-Sources, Globar, Nernst lamp

new sketch used Globar (SiC, ~1.500 K)

Nernst lamp with Nernst rod, a ZrO_2/Y_2O_3 ion conductor 1.900 K

Any heated material will produce infrared radiations

4.1 Electromagnetic radiation: Sources UV and NIR radiation

Wave lengths of some lasers for UV, visible and Raman specroscopy

4.1 Electromagnetic radiation: Sources UV and NIR radiation

4.1 Electromagnetic radiation: Sources UV radiation

Sketch of a mercury (low pressure) lamp Excitation/ionisation of Hg by fast electrons (Importent Hg lines are 313 nm, 365 nm (i line), 405 nm (h line), 434 nm (g line), 546 nm (e line) and 577/579 nm und nm (orange dubble line)).

UV or black light lamp

4.1 Electromagnetic radiation: Sources X-rays

X-rax tube

X-rax tube: sketched and dashed

4.1 Electromagnetic radiation: Sources

Abb. 5: Die Leuchtdichte von DORIS im Vergleich zu einigen bekannten Strahlungsquellen. (Die Leuchtdichte ist die Zahl der Photonen, die pro Sekunde und Wellenlängenintervall in eine bestimmte Richtung abgestrahlt wird.)

tunable electromagnetic radiation

4.1 Electromagnetic radiation: Sources Synchroton

4.1 Electromagnetic radiation: Sources Synchroton

Use of Synchroton Radiation in materials science

Gamma rays can occur whenever charged particles pass through magnetric fields or pass within certain distances of each other or by nuclear reactions (e.g. fusion or decay processes)

4.1 Electromagnetic radiation: Sources Gamma-rays

Gamma-radiation source

Nuclear decay products

4.1 Electromagnetic radiation: Sources Neutrons

View into a nuclar reactor with Cherenkov radiation

Scetch of a nuclear power plant

De Broglie wave length: $\Lambda = h/(m \cdot v)$ e.g. n with v = 3.300 m/s \rightarrow 0,05 eV \rightarrow 1,2 Å (0,12 nm)

Schematic of a Nuclear Power Plant

4.2 Microscopic techniques: OM, SEM, CTEM, HREM

Fig. 4.2 Working ranges of various techniques used for viewing solids. CTEM = conventional transmission electron microscopy; HREM = high-resolution electron microscopy; SEM = scanning electron microscopy

Analysis/determination of the crystal/molecular structure of a solid with the help of X-rays or neutrons means (because of the 3D periodicity of crystals): Determination of

- the geometry (lattice constants a, b, c, α , β , γ)
- the symmetry (space group)
- the content (typ, site x_j, y_j, z_j and thermal parameters B_j of the atoms j)

of the unit cell of a crystalline compound and their analysis/interpretation with respect to chemical or physical problems or questions.

is based on diffraction of electromagnetic radiation or neutrons of suitable energies/wavelengths/velocities and one needs:

- a crystalline sample (powder or single crystal, V~0.01mm³)
- an adequate electromagnetic radiation ($\lambda \sim 10^{-10}$ m)
- some knowledge of properties and diffraction of radiation
- some knowledge of structure and symmetry of crystals
- a diffractometer (with point and/or area detector)
- a powerful computer with the required programs for solution, refinement, analysis and visualization of the crystal structure
- some chemical feeling for interpretation of the results

If a substance is irradiated by electromagn. Radiation or neutrons of suitable wavelength, a small part of the primary radiation (~ 10⁻⁶) is scattered by the electrons or nuclei of the atoms /ions/molecules of the sample elastically ($\Delta E = 0$) and coherently ($\Delta \phi = \text{konstant}$) in all directions. The resulting scattering/diffraction pattern **R** is the Fourier transform of the elektron/scattering distribution function ρ of the sample and vice versa.

The shape of the resulting scattering/diffraction pattern depends on the degree of order of the sample.

B. X-ray scattering diagram of a crystalline sample

crystal powder orientation statistical, λ fixed \Rightarrow cones of interference

Debye-Scherrer diagram

single crystal orientation or λ variable \Rightarrow dots of interference (reflections) $\uparrow^{0 \times 0}$

precession diagram

4.3 Diffraction of X-rays or neutrons at a crystalline sample (single crystal or crystal powder)

X-rays scattered from a crystalline sample are <u>not totally extinct</u> only for those directions, where the <u>scattered rays are _in phase</u>^{*}. R(S) und $I(\theta)$ therefore are periodic functions of _Bragg reflections^{*}.

Bragg equation: $\mathbf{n}\cdot\lambda = 2\mathbf{d}\cdot\sin\theta$ or $\lambda = 2\mathbf{d}_{(hkl)}\cdot\sin\theta_{(hkl)}$

4.3 Basic equation of X-ray analysis: Bragg equation

Lattice planes: Why are they important?

Question: How are directions and planes in a regular lattice defined ?

Bragg equation: $n\lambda = 2d \sin\theta$ $\lambda = 2d_{(hkl)} \sin\theta_{(hkl)}$

Lattice plane series: Miller indices hkl, d values

(X-ray) diffraction of a crystalline sample (single crystal or crystal powder) detector (film, imaging plate) Ιθ $\lambda = 2d_{hkl} \cdot \sin\theta_{hkl}$ (Bragg) \vec{s}_0 : WVIB scattered beam \vec{s} : WVSB; $|\vec{s}| = |s_0| = 1/\lambda$ (or 1) $\vec{S} = \vec{s} - \vec{s}_0$ S: Scattering Vector \vec{S}_0 $\vec{S} = \vec{H} (Bragg)$ S₀ incident beam stop x-ray beam sample source $\mathbf{n}\cdot\boldsymbol{\lambda} = 2\mathbf{d}\,\sin\boldsymbol{\theta}$ $S = 2sin\theta_{hkl}/\lambda = 1/d_{hkl} = H$

Fourier transform of the electron density distribution

sample

$$\rho(\vec{r}) = \frac{\int_{V} \rho(\vec{r}) \exp(2\pi i \vec{r} \cdot \vec{S}) dV}{\rho(\vec{r}) = \frac{1}{V} \int_{V^*} R(\vec{S}) \exp(-2\pi i \vec{r} \cdot \vec{S}) dV^*}$$

$$diffr. pattern
R(\vec{S})$$

$$R \neq 0$$
only if
R(\vec{S})

: scattering vector \equiv vector in Fourier (momentum) space

Analysis/determination of the crystal/molecular structure of a crystalline solid with the help of X-rays or neutrons therefore means:

Determination of

- the geometry (lattice constants a, b, c, α , β , γ)
- the symmetry (space group)
- the content (type, site x_j, y_j, z_j and thermal parameters B_j of the atoms j)

of the unit cell of that crystalline compound from the scattering/diffraction pattern R(S) or $I(\theta)$ or I(hkl)How does that work?

- The geometry (lattice constants a, b, c, α , β , γ) of the unit cell/ compond one can get from the geometry of the diffraction pattern, i.e. from the site of the reflections (diffraction angles θ for a powder; "Euler angles" θ , ω , φ , χ for a single crystal)
- The symmetry (space group) one can get from the symmetry of the reflections and the systematically extinct reflections,
- The content of the unit cell (typ, site x_j , y_j , z_j and thermal parameters B_j of the atoms j) one can get from the intensities I(hkl) of the reflections and the respective phases α (hkl).

 $|Fo(hkl)| \approx (I(hkl))^{1/2} \quad Fc(hkl) = \Sigma f_j \cdot exp(2\pi i(hx_j + ky_j + lz_j))$ $\delta(xyz) = (1/V) \cdot \Sigma |Fo(hkl)| \cdot exp(i\alpha(hkl) \cdot exp(-2\pi i(hx + ky + lz)))$

The structure factor is named Fo(hkl), if observed, i.e. derived from measured I(hkl) and Fc(hkl) if calculated from f_j , x_j , y_j , z_j . Note that (hkl) represent lattice planes and hkl reflections.

- \rightarrow The intensitis I_{hkl} of the reflections (i.e. of the reciprocal lattice points) thus reflect the atomic arrangement of the real crystal structure.
- \rightarrow Each intensity I(hkl) or I_{hkl} is proportional to the the square of a quantity called structure factor F(hkl) or F_{hkl} (Fo for observed, Fc for calculated).
- \rightarrow The structure factor F(hkl) is a complex number in general but becomes real in case of crystal structures with a centre of symmetry:

$$F(hkl) = F_{hkl} = \sum_{j} f_{j} \cos 2\pi (hx_{j} + ky_{j} + lz_{j})$$

 \rightarrow In case of centrosymmetric crystal structures, the phases are 0 or π , i.e. "only" the signs instead of the phases of the structure factors have to be determined.

The problem is that the phases/signs are lost upon measurement of the intensities of the reflections (phase problem of crystal structure analysis/determination)

Structure determination only indirectly possible!

1. Fixing und centering of a crystal on a diffractometer and determination of the orientaion matrix M and the lattice constants a, b, c, α , β , γ of the crystal from the Eulerian angles of the reflections (θ , ω , φ , χ) and of the cell content number Z (aus cell volume, density and formula),

Principle of a four-circle diffraktometer for single crystal stucture determination by use of X-ray or neutron diffraction

CAD4 (Kappa-Axis-Diffraktometer)

4.3 X-ray analysis with single crystals: Reciprocal lattice (calculated from an IPDS measurement)

- 2. Determination of the space group (from symmetry and systematic extinctions of the reflections)
- 3. Measuring of the intensities I(hkl) of the reflections (asymmetric part of the reciprocal lattice up to $0.5 \le \sin\theta/\lambda \le 1.1$ is sufficient)
- 4. Calculation of the structure amplitudes $|Fo_{hkl}|$ from the I_{hkl} incl. absorption, extinktion, LP correction \rightarrow data reduction
- 5. Determination of the scale factor K and of the mean temperature parameter B for the compound under investigation from the mean $|Fo_{hkl}|$ values for different small θ ranges θ_m according to $\ln(|Fo|^2/\Sigma f_i^2) = \ln(1/K) - 2B(\sin^2\theta_m)/\lambda^2 \rightarrow data skaling$

- 6a. Determin. of the phases α_{hkl} of the structure amplitudes $|Fo_{hkl}| \rightarrow$ phase determination (phase problem of structure analysis)
 - trial and error (model, than proff of the scattering pattern)
 - calculation of the Patterson function

 $P_{(uvw)} = (1/V) \cdot \Sigma |F_{hkl}|^2 \cos 2\pi (hu + kv + lw)$

from the structure amplitudes resulting in distance vectors between all atoms of the unit cell

Points to the distribution and position of ,,heavy atoms" in the unit cell \rightarrow heavy atom method

6b. Determin. of the phases α_{hkl} of the structure amplitudes $|Fo_{hkl}|$

• direct methodes for phase determination phases α_{hkl} and intensity distribution are not indipendant from each other \rightarrow allowes determination of the phases $\alpha_{hk}l$

e.g. $F(hkl) \sim \Sigma\Sigma\Sigma F(h'k'l') \cdot F(h-h',k-k',l-l')$ (Sayre, 1952)

oder S(F_{hkl}) ~ S(F_{h'k'l'})·S(F_{h-h',k-k',l-l'}) (S = sign of F)

direct methodes today are the most important methodes for the solving the phase problem of structur analysis/determination

• anomalous dispersion methodes use the phase and intensity differences in the scattering near and far from absorption edges (measuring with X-rays of different wave lengths necessary)

7. Calculation of the electron density distribution function

 $\delta(xyz) = (1/V) \cdot \Sigma |Fo_{hkl}| \cdot exp(i\alpha_{hkl} \cdot exp(-2\pi i(hx+ky+lz))) of the$

unit cell from the structure amplitudes $|Fo_{hkl}|$ and the phases α_{hkl} of the reflections hkl (using B and K) \rightarrow Fourier synthesis

Platin-Phthalocyanin, $PtC_{32}H_{16}N_8$: Elektronendichteprojektion $\rho(xz)$.

and determination of the elements and the atom sites x_j , y_j , $z_{j^{44}}$

 Calculation of the structure factors Fc_{hkl} (c: calculated) by use of these atomic sites/coordinates x_j, y_j, z_j and the atomic form factors (atomic scattering factors) f_i according to

 $Fc_{hkl} = \Sigma f_j \cdot exp(2\pi i(hx_j + ky_j + lz_j))$

9. Refinement of the scale factor K, the temperature parameter B (or of the individuel B_j of the atoms j of the unit cell) and of the atomic coordinates x_j,y_j,z_j by use of the least squares method, LSQ via minimising the function

 $(\Delta F)^2 = (|F_o| - |F_c|)^2$ for all measured reflections hkl

agreement factor: $R = \Sigma |(|F_o| - |F_c|)| / \Sigma |F_o|$

10. Calculation of the bond lengths and angles etc. and graphical visualisation of the structure (structure plot)

Crystallographic and structure refinement data of Cs₂Co(HSeO₃)₄·2H₂O

Name	Figure	Name	Figure	
Formula	$Cs_2Co(HSeO_3)_4 \cdot 2H_2O$	Diffractometer	IPDS (Stoe)	
Temperature	293(2) K	Range for data collection	3.1° ≤Θ≤ 30.4 °	
Formula weight	872.60 g/mol	hkl ranges	$-10 \le h \le 10$	
Crystal system	Monoclinic		$-17 \le k \le 18$	
Space group	<i>P</i> 2 ₁ /c		$-10 \le l \le 9$	
Unit cell dimensions	a = 757.70(20) pm	Absorption coefficient	$\mu = 15.067 \text{ mm}^{-1}$	
	<i>b</i> = 1438.80(30) pm	No. of measured reflections	9177	
	c = 729.40(10) pm	No. of unique reflections	2190	
	$\beta = 100.660(30)^{\circ}$	No. of reflections $(I_0 \ge 2\sigma(I))$	1925	
Volume	$781.45(45) \times 10^6 \text{ pm}^3$	Extinction coefficient	$\varepsilon = 0.0064$	
Formula units per unit cell	Z = 2	Δho_{min} / Δho_{max} / e/pm ³ × 10 ⁻⁶	-2.128 / 1.424	
Density (calculated)	3.71 g/cm ³	$R_1 / wR_2 (I_0 \ge 2\sigma (I))$	0.034 / 0.081	
Structure solution	SHELXS – 97	R_1 / wR_2 (all data)	0.039 / 0.083	
Structure refinement	SHELXL – 97	Goodness-of-fit on F^2	1.045	
Refinement method	Full matrix LSQ on F^2			

Positional and isotropic atomic displacement parameters of Cs₂Co(HSeO₃)₄·2H2O

Atom	WS	X	У	Z	U _{eq} /pm ²
Cs	4e	0.50028(3)	0.84864(2)	0.09093(4)	0.02950(11)
Со	2a	0.0000	1.0000	0.0000	0.01615(16)
Se1	4e	0.74422(5)	0.57877(3)	0.12509(5)	0.01947(12)
011	4e	0.7585(4)	0.5043(3)	0.3029(4)	0.0278(7)
012	4e	0.6986(4)	0.5119(3)	-0.0656(4)	0.0291(7)
013	4e	0.5291(4)	0.6280(3)	0.1211(5)	0.0346(8)
H11	4e	0.460(9)	0.583(5)	0.085(9)	0.041
Se2	4e	0.04243(5)	0.67039(3)	-0.18486(5)	0.01892(12)
O21	4e	-0.0624(4)	0.6300(2)	-0.3942(4)	0.0229(6)
022	4e	0.1834(4)	0.7494(3)	-0.2357(5)	0.0317(7)
023	4e	-0.1440(4)	0.7389(2)	-0.1484(4)	0.0247(6)
H21	4e	-0.120(8)	0.772(5)	-0.062(9)	0.038
OW	4e	-0.1395(5)	1.0685(3)	0.1848(5)	0.0270(7)
HW1	4e	-0.147(8)	1.131(5)	0.032	0.032
HW2	4e	-0.159(9)	1.045(5)	0.247(9)	0.032

Anisotropic thermal displacement parameters $Uij \times 104 / pm2$ of $Cs_2Co(HSeO_3)_4 \cdot 2H_2O$

Atom	U ₁₁	U ₂₂	U ₃₃	U ₁₂	U ₁₃	U ₂₃
Cs	0.0205(2)	0.0371(2)	0.0304(2)	0.00328(9)	0.0033(1)	-0.00052(1)
Со	0.0149(3)	0.0211(4)	0.0130(3)	0.0006(2)	0.0041(2)	0.0006(2)
Se1	0.0159(2)	0.0251(3)	0.01751(2)	-0.00089(1)	0.00345(1)	0.00097(1)
011	0.0207(1)	0.043(2)	0.0181(1)	-0.0068(1)	-0.0013(1)	0.0085(1)
012	0.0264(2)	0.043(2)	0.0198(1)	-0.0009(1)	0.0089(1)	-0.0094(1)
013	0.0219(1)	0.034(2)	0.048(2)	0.0053(1)	0.0080(1)	-0.009(2)
Se2	0.0179(2)	0.0232(2)	0.0160(2)	0.00109(1)	0.00393(1)	-0.0001(1)
O21	0.0283(1)	0.024(2)	0.0161(1)	0.0008(1)	0.0036(1)	-0.0042(1)
022	0.0225(1)	0.032(2)	0.044(2)	-0.0058(1)	0.0147(1)	-0.0055(1)
O23	0.0206(1)	0.030(2)	0.0240(1)	0.0018(1)	0.0055(1)	-0.0076(1)
OW	0.0336(2)	0.028(2)	0.0260(2)	0.0009(1)	0.0210(1)	-0.0006(1)

The anisotropic displacement factor is defined as: exp $\{-2p2[U11(ha^*)2 + ... + 2U12hka^*b^*]\}$

Some selected bond lengths (/pm) and angles(/°) of $Cs_2Co(HSeO_3)_4 \cdot 2H_2O$

CsO ₉ polyhedron			
Cs-O11	316.6(3)	O22-Cs-OW	78.76(8)
Cs-O13	318.7(4)	O22-Cs-O12	103.40(9)
Cs-O22	323.7(3)	O23-Cs-O11	94.80(7)
Cs-O23	325.1(3)	O13-Cs-O11	42.81(8)
Cs-OW	330.2(4)	O11-Cs-O23	127.96(8)
Cs-O21	331.0(3)	O13-Cs-O22	65.50(9)
Cs-O12	334.2(4)	O22-Cs-O22	66.96(5)
Cs-O22	337.1(4)	O11-Cs-OW	54.05(8)
Cs-O13	349.0(4)	O23-Cs-O22	130.85(9)
CoO ₆ octahedron			
Co-OW	210.5(3)	OW-Co-OW	180
Co-O11	210.8(3)	OW-Co-O21	90.45(13)
Co-O21	211.0(3)	OW-Co-O11	89.55(13)

SeO ₃ ²⁻ anions					
Se1-O11	167.1(3)		O12- Se1-O11	104.49(18)	
Se1-O12	167.4(3)		O12- Se1-O13	101.34(18)	
Se1-O13	177.2(3)		O11- Se1-O13	99.66(17)	
Se2-O21	168.9(3)		O22- Se2-O21	104.46(17)	
Se2-O22	164.8(3)		O22- Se2-O23	102.51(17)	
Se2-O23	178.3(3)		O21- Se2-O23	94.14(15)	
Hydrogen bonds		d(O-H)	d(OH)	d(O…O)	<0H0>
O13-H11-O12		85(7)	180(7)	263.3(5)	166(6)
O23-H21O21		78(6)	187(7)	263.7 (4)	168(7)
OW-HW1···O22		91(7)	177(7)	267.7 (5)	174(6)
OW-HW2012		61(6)	206(6)	264.3 (4)	161(8)

Symmetry codes:

- 1.-x, -y+2, -z2.-x+1, -y+2, -z3.-x+1, y-1/2, -z+1/24.x-1, -y+3/2, z-1/25.x, -y+3/2, z-1/26.x, -y+3/2, z+1/27.-x, y-1/2, -z-1/28.-x+1, y+1/2, -z+1/29.x+1, -y+3/2, z+1/210.-x, y+1/2, -z-1/211.-x+1, -y+1, -z12.x-1, -y+3/2, z+1/2

Connectivity of the coordination polyhedra of Cs₂Co(HSeO₃)₄·2H₂O

Hydrogen bonds of Cs₂Co(HSeO₃)₄·2H₂O

Anions and hydrogen bonds of $Cs_2Co(HSeO_3)_4$ ·2H₂O

Crystal structure of Cs₂Co(HSeO₃)₄·2H₂O

4.3 X-ray powder diffraction (principle)

Because of the random orientation of the crystallites in a powder sample, X-ray diffraction results in cones of central angle θ_{hkl} with high intensity of scattered beams each representing a set of lattice planes hkl with the corresponding Bragg angle θ_{hkl} and spacing d_{hkl} .

Above conditions are due to Bragg's law/equation.

$$\frac{1}{d_{hkl}} = \frac{2 \cdot \sin \theta_{hkl}}{\lambda} \text{ or } \lambda = 2 \cdot d_{hkl} \cdot \sin \theta_{hkl} \text{ or } d_{hkl} = \frac{\lambda}{2 \cdot \sin \theta_{hkl}}$$

4.3 X-ray powder diffraction (Debye-Scherrer Geometry)

4.3 X-ray powder diagrams: Miller indices of Bragg reflections

4.3 X-ray powder diffraction (Bragg-Brentano diffractometer)

Bragg-Brentano diffractometer

4.3 X-ray powder diffraction (polycrystalline samples)

Powder sample holder

Powder diffractometer (STOE)

Goniometer head

4.3. X-ray powder diffraction (Bragg-Brentano Geometry)

Silver-Behenate

[🕅] agbehenate 0.1dg divergence 2.3 soller 1-3mm slits ni filt - Type: 2Th/Th locked - Start: 0.500 ° - End: 19.998 ° - Step: 0.007 ° -

4.3 X-ray powder diffraction (analysis)

4.3 X-ray powder diffraction

Temperature dependent X-ray powder diffraction diagram

4.4 Photoemission or Photoelectron spectroscopy: ESCA

ESCA = <u>E</u>lectron <u>S</u>pectroscopy for <u>C</u>hemical <u>A</u>nalysis

The spectrum of the emitted electrons is analyzed with respect to:

- energy
- momentum
- spin

- the higher the binding energy $(E_{bind.})$ the lower the E_{out} !
- ESCA is particularly a surface sensitive method (UHV !)

4.4 ESCA measurement for solids: band structure

- 4.4 Typical ESCA spectra for molecules: functionality of atoms in molecules
- Analysis of the energy levels of electrons in molecules ("chemical shift")

4.5 X-ray absorption spectroscopy: EXAFS, XANES

Spectroscopical methods associated with specific physical effects at/near characteristical X-ray absorption edges:

EXAFS: <u>Extended X</u>-Ray <u>Absorption Fine Structure</u> XANES: <u>X</u>-Ray <u>Absorption N</u>ear <u>Edge S</u>tructure - tunable synchroton radiation in the X-Ray region necessary

4.6 Moessbauer Spectroscopy

 \rightarrow The nucleus of the specific isotope of an atom embdedded in a solid (e.g. ⁵⁷Fe = absorber) is excited by γ -rays emitted by an instable isotope of a neighbor element (e.g. ⁵⁷Co = source). Slow mechanical movement of the source modifies the emission energy (Doppler effect) and allows resonance absorption in the absorber. The resonance energy depends significantly on the chemical surrounding of the absorber atom

R. Moessbauer N.P. 1961

frequently applied for \rightarrow ⁵⁷Fe, ¹¹⁹Sn, ¹²⁷J ...

 \rightarrow chemical surrounding (symmetry, coordination number, oxidation state, magnetism) of atoms with these nuclei in a solid can be probed in a highly sensitive way (~10⁻⁸ eV)

4.6 Moessbauer Spectroscopy

Fig. 4.27 Chemical shifts in iron-containing compounds. (From Bancroft, Mössbauer Spectroscopy, McGraw-Hill, 1973)

Two major informations from Moessbauer spectra:

a) "Chemical Shift"
(not to be confused with the same term in NMR and ESCA)
→ oxidation state

b) Hyperfine Splitting
 → magnetic interactions, symmetry

4.7 Impedance spectroscopy (basic aspects)

<u>Purpose:</u> Exploring the electrical behavior of a microcrystalline solid sample as function of an alternating current (ac) with a variable frequency.

(note: difference between ac-/dc- and ionic/electronic conduction !!!)

Three basically different regions for the exchange interactions between current and sample:

a) inside the grains ("bulk")

b) at grain boundaries

c) surface of the electrodes

The electrical behavior is simulated by a suitable combination of RC circuits: R = resistivity, C = capacity

4.7 Impedance device and impedance plot for an ionic conductor

Idealized impedance plot (Nyquist diagram) for an ionic conductor

4.8 Magnetic measurements: Gouy-balance and squid magnetometer

4.9 Thermal Analysis: DTA (Differential Thermal Analysis)

Fig. 4.31 The DTA method. Graph (b) results from the set-up shown in (a) and graph (d), a typical DTA trace, results from the arrangement shown in (c)

4.9 Thermal analysis: TG (Thermogravimetry) (Mass change during heating or cooling, combinable with DTA)

Other variants of thermal analysis : DSC: <u>D</u>ifferential <u>S</u>canning <u>C</u>alorimetry - Quantitative measurement of enthalpy changes TMA: <u>Thermo Mechanical Analysis</u> (e.g. dilatometry) - Mechanical changes that occur upon temperature changes
4.9 Thermal analysis: DSC (Differential Scanning Calorimetry) (-170 °C to 700°C)

4.10 Comparison of some techniques for structural studies

•

matter

				· · · · · · · · · · · · · · · · · · ·	
Technique	Nature of the Effect	Information	Interaction time	Sensitivity	Comments
X-ray diffraction	Scattering, mainly by electrons, followed by interference $(\lambda = 0.01-1 \text{ nm})$	Electron density map of crystal	10 ⁻¹⁸ s but averaged over vibrational motion	crystal ca. 10 ⁻³ cm ³	Location of light atoms or distinction between atoms of similar scattering factor difficult in presence of heavy atoms
Neutron diffraction	Scattering, mainly by nuclei, followed by interference $(\lambda = 0.1 \text{ nm})$	Vector internuclear distances	10 ⁻¹⁸ s but averaged over vibrational motion	crystal ca. 1 cm ³	Extensively used to locate hydrogen atoms. May give additional information due to spin $\frac{1}{2}$ on neutron leading to magnetic scattering
Electron diffraction	Diffraction (atom or molecule) mainly by nuclei, but also by electrons $(\lambda = 0.01-0.1 \text{ nm})$	Scalar distances due to random orientation	10 ⁻¹⁸ s but averaged over vibrational motion	100 Pa (1 Torr)	Thermal motions cause blurring of distances. Preferably only one (small) species present. Heavy atoms easy to detect
Microwave	Absorption of radiation due to dipole change during rotation $(\lambda = 0.1-30 \text{ cm};$ 300-1 GHz in frequency)	Mean value of r^{-2} terms; potential function	10 ⁻¹⁰ s	10 ⁻² Pa (10 ⁻⁴ Torr)	Mean value of r^{-2} does not occur at r_e even for harmonic motion. Dipole moment necessary. Only one component may be detected. Analysis difficult for large molecules of low symmetry
Vibrational infrared	Absorption of radiation due to dipole change during vibration $(\lambda = 10^{-1}-10^{-4} \text{ cm})$	Qualitative for large molecules	10 ⁻¹³ s	100 Pa (1 Torr)	Useful for characterization. Some structural informa- tion from number of bands, position and possibly isotope effects. All states of

Comparison of some physical techniques for structural studies

4.10 Comparison of some techniques for structural studies

Comparison of some physical techniques for structural studies

Technique	Nature of the Effect	Information	Interaction time	Sensitivity	Comments
Vibrational Raman	Scattering of radiation with changed frequency due to polarizability change during a vibration $(\lambda = visible usually)$	Qualitative for large molecules	10 ⁻¹⁴ s	10 ⁴ Pa (100 Torr) (v ⁴ dependent)	Useful for characterization. Some structural informa- tion from number of bands, position, depolarization ratios, and possibly isotope effects. All states of matter
Electronic	Absorption of radiation due to dipole change during an electronic transition $(\lambda = 10-10^2 \text{ nm})$	Qualitative for large molecules	10 ⁻¹⁵ s	1 Pa (10 ⁻² Torr)	Useful for characterization. Some structural informa- tion from number of bands and position. All states of matter
Nuclear magnetic resonance	Interaction of radiation with a nuclear transition in a magnetic field $(\lambda = 10^2 - 10^7 \text{ cm};$ 3 KHz to 300 MHz)	Number of magnetically equivalent nuclei in each environmen	10 ⁻¹ -10 ⁻⁹ s	10 ³ Pa (10 Torr (¹ H))	Applicable to solutions and gases. In conjunction with molecular weight measurements may be possible to choose one from several possible models
Mass spectrometry	Detection of fragments by charge/mass	Mass number, plus fragmentation patterns		10 ⁻⁹ Pa (10 ⁻¹¹ Torr)	Useful for characterization of species in a vapour, complicated by reactions in spectrometer. Does not differentiate isomers directly. Important for detecting hydrogen in a molecule

From I. R. Beattie, Chem. Soc. Rev., 4, 107 (1975). Used with permission.

4.10 Comparison of some techniques for structural studies

	Phase of sample					
Information sought	Gas	Liquid or solution	Solid			
Fingerprint ^a	IR *Microwave	IR, R NMR	IR, R Powder X-ray diffraction			
	Mass spec. UV/vis *UPS	Mass spec." UV/vis	Mass spec." UV/vis			
Groups present	IR Mass spec. NMR	IR, R Mass spec. ^b NMR	IR, R Mass spec. ^b *NMR * <i>Mössbauer</i>			
Molecular symmetry	IR ^c * <i>Microwave</i> **ED	IR, R NMR	IR, R *NMR **NQR Single crystal X-ray diffraction			
Bond lengths and angles	IR, R ^d *Microwave **ED	*** <i>EXAFS</i> LCMNR	Single crystal X-ray diffraction ***Neutron diffraction			
Electronic structure	UV/vis *UPS ESR	UV/vis ESR * <i>XPS</i>	UV/vis *UPS *XPS *Mössbauer **NQR Single crystal X-ray and neutron diffraction			

,