4. Advanced features DP and structural disorder I

Low dimensional order and prominent diffuse scattering

- 2D order: layered compounds (cf. polytypes: SiC)
- 1D order: structures with filled channels (zeolites)
- Structures with local order: (finite domains, correlated environments)
- Statistical disorder (e.g. random distribution of vacancies)

Real space

diffuse rods

planes with diffuse scattering

3D diffuse scattering

4. Advanced features DP and structural disorder II

Crystal data

Formula sum Crystal system Space group Unit cell dimensions Z Cu_{0.8} In_{2.4} Se₄ tetragonal *I*-4 2 m (no. 121) a = 5.7539(3) Å c = 11.519(1) Å 2

Atomic coordinates

Atom	Ox.	Wyck.	Occ.	X	У	Ζ
Cu1	+1	2a	0.8	0	0	0
ln1	+3	4 <i>d</i>	1.0	0	1/2	1/4
In2	+3	2b	0.4	0	0	1/2
Se1	-2	8 <i>i</i>	1.0	1/4	1/4	1/8

Average structure

Random arrangement of vacancies: no prominent diffuse scattering

4. Advanced features Average vs. real structure

Structure determination = X-ray diffraction = average of all different sections of a crystal

typical section <u>ordered crystal</u> all sites fully occupied

typical sections <u>disordered crystal</u> atoms and vacancies on one site

Disordered crystal billions of different sections

- X-ray diffraction (standard procedure): average of the structure
- Consequence 1: a fraction of vacancies is on every site of the unit cell
- Consequence 2: reduced occupancy factor
- Consequence 3: average structures are not unambiguous

4. Advanced features Example for an average structure I

Example: La₂O₃ (A-Form)

4. Advanced features Example for an average structure II

Synthesis of solids
1. High temperature synthesis
2. Chemical vapour transport
3. Soft chemistry
4. Nanomaterials

Introduction Goals of synthesis / preparation

- Synthesis of new compounds
- Synthesis of highly pure, but known compounds
- Synthesis of highly pure single crystals (Iceberg-principle)
- Structural modification of known compounds bulk-structures and nanostructures

View field: 17.81 HV: 20.0 kV VAC: HiVac

DATE: 03/31/06 5 Device: TS5130MM

5 um

Vega ©Tescan MPI-FKF

1. High temperature synthesis Classical solid state reaction from the elements

Standard procedure:

"Shake and bake", "heat and beat", "trial and error"

"The starting materials are finely grinded, pressed to a pellet and heated to a temperature "near" the melting temperature."

Parameters influencing the reaction:

- Purity of educts (sublimation)
- Handling of educts (glove box, Schlenck technique)
- Temperature: T(reaction) > 2/3 T(melting point), rule of Tamann. Effects on real structure (more defects at elevated T) and diffusion (increase with T)
- Solid state reactions are exothermic, "thermodynamically controlled": Consequence: No metastable products (see e.g. Zeolites)
- Porosity, grain size distribution and contact planes: High reactivity of nanoparticles / colloides (low CN)

1. High temperature synthesis Classical solid state reaction from the elements

Experimental consequences:

- (1) large contact areas
- (2) small path lengths
- (3) small pore volume

Reactive sintering: pellets of fine powders

Problems / Pitfalls:

- "Chemical problems" of containers materials: use of reactive materials remedy: double / coated containers
- "Physical problems" of containers: compatible expansion/compression coefficients, sufficiently stable to withstand pressure
- Separation of educts, remedy: special furnaces, reduced free volume, tricks
- No intrinsic purification processes

Ex.: $2 \operatorname{Li}_2 \operatorname{CO}_3 + \operatorname{SiO}_2 \rightarrow \operatorname{Li}_4 \operatorname{SiO}_4 + 2\operatorname{CO}_2 (800 \,^\circ\text{C}, 24 \, \text{h})$

- Li-compounds are highly reactive against containers (use of Au)
- Production of a gas, consequence: cracking of containers

1. High temperature synthesis From "Trial and Error" to systematic procedure

- Examining pseudobinary sections under DTA control
- Systematic observations on mixed crystal series control by powder diffraction

1. High temperature synthesis Tricks

- Application of a "gaseous solvent" chemical or vapor phase transport Ex.: $Cr_2O_3(s) + 3/2 O_2(g) \rightarrow 2 CrO_3(g)$ $MgO(s) + 2 CrO_3(g) \rightarrow MgCr_2O_4(s) + 3/2 O_2(g)$
- Separation of educts in a temperature gradient (to avoid explosions) Ex.: 2 Ga(I) + 3 S(g) \rightarrow Ga₂S₃(g)
- Use of precursors for reactive educts
 - Ex.: Thermal decomposition of MN_3 (M = Na, K, Rb, Cs) Thermal release of reactive gases: (O_2 : MnO_2 , CO_2 : $BaCO_3$, H_2 : LnH_2) Coprecipitation and thermal decomposition (e.g. oxolates to oxides)
- Use of fluxes

Ex.: $Li_2CO_3 + 5 Fe_2O_3 \rightarrow 2 LiFe_5O_8 + CO_2(g)$ (incompl. :grind-fire-regrind, etc.) Or: Flux of Li_2SO_4/Na_2SO_4 (dissolves Li_2CO_3 , remove flux with water)

• Metathesis reaction Ex.: $2GaCl_3 + 3Na_2Te \rightarrow Ga_2Te_3 + 6NaCl$, very exothermic!

1. High temperature synthesis Orientation and transport during synthesis

Ex.: spinel: no electron transport, counter diffusion of ions

- What happens at the boundary?
- Nucleation: facilitated by O-arrangement
- Al₂O₃: Epitaxy (2D), MgO: Topotaxy (3D)

2. Chemical vapour transport Principles

A <u>solid</u> is <u>dissolved</u> in the <u>gas phase</u> at one place (T=T1) by reaction with a <u>transporting agent</u> (e.g. I_2). At another place (T=T2) the solid is <u>condensed</u> again. Use of a temperature gradient.

$$ZnS(s) + I_2(g) = ZnI_2(s) + S(g)$$

- Used for purification and synthesis of single crystals (fundamental research)
- Reactions with large absolute value of ΔH° gives no measurable transport
- The sign of ΔH° determines the direction of transport: exothermic reactions: transport from cold to hot endothermic reactions: transport from hot to cold.

2. Chemical vapour transport Examples

- Mond-process: Ni(s) + 4 CO(g) = Ni(CO)₄(g)
 ΔH° = -300 kJ/mol, transport from 80° to 200°C
- Van Arkel / De Boer: Zr(s) + 2 I₂(g) = ZrI₄(g); (280 to 1450 °C)
- Si(s) + SiX₄(g) = 2 SiX₂(g); (1100° to 900°)
- Mixtures of Cu and Cu₂O: 3 Cu(s) + 3 HCl(g) = Cu₃Cl₃(g) + (3/2) H₂(g); (High T to Low T) 3/2 Cu2O(s) + 3 HCl(g) = Cu₃Cl₃(g) + 3/2 H₂O(g); (Low T to High T)
- Transport of Cu₂O(s): 3/2 Cu₂O(s) + 3 HCl(g) = Cu₃Cl₃(g) + 3/2 H₂O(g); (Low T to High T) Cu₂O(s) + 2 HCl(g) = 2 CuCl(g) + H₂O(g); (High T to Low T)

3. Soft chemistry Hydrothermal synthesis

Chemical transport in supercritical aqueous solution (H_2O : T_k = 374 °C, p_k = 217,7 atm)

Autoclave for the growth of $\underline{SiO_2}$ single <u>crystals (\rightarrow quartz)</u>

1500 bar, T- gradient 400 \rightarrow 380 °C

nutrient (powder), 2: seed crystal,
 mechanical fixing of crystal
 product crystal

Lit.: Die Rolle der Hydrothermalsynthese in der präparativen Chemie, A. Rabenau, Angew. Chem. 97 (1985) 1017

3. Soft chemistry Synthetic Zeolites

"... vielfach ist aber die Funktion des Templats wenig oder überhaupt nicht verstanden" (F. Schüth, 2003)

3. Soft chemistry <u>Zeolites – comments on function of the template</u>

TREN-GaPO

- Only rare examples/indications for a clear correlation between pore size and shape of the template molecules
- Zeolites occurring as minerals don't need any template for their formation
- Zeolites can be synthesized without any template

Repetition X-ray analysis

- Space groups
- Content of IT A
- Diffraction: Fourier transformation (FT) of $\rho(r)$
- Atomic scattering factor
- FT of periodic objects: Amplitude and phase of the scattered wave is approximated by the structure factor, $F_{hkl} = \Sigma f_i \exp(2\pi i(hx + ky + lz))$
- Structure factor calculations: Intensity and extinctions
- Systematic of extinctions: Translations
- Bragg's law: position of the peaks (lattice parameters)

3. Soft chemistry Solvothermal synthesis

Expanded Sodalite cage with T3

*Arizona State University

3. Soft chemistry Precipitation at low temperature

- Starting point: aqueous solution of R₄Sn₂S₆ (pH~13)
- Condensation products by decreasing pH

• pH > 11: layers

pH < 9 (HCl_{aq}): Formation of Berndite

)Sn)S

3. Soft chemistry Precipitation at low temperature

MOF = Metal organic framework

Synthesis: Diffusion of Zn(II)salt-solutions in organic bifunctional acids simple chemistry (precipitation) – remarkable results

Two components (SBU = secondary building unit) of the microporous structure

SBU 1: inorganic component cluster of ZnO₄ tetrahedra with six junctures

Organic linker

SBU 2: organic component CH-core of bifunctional acid

3. Soft chemistry Precipitation at low temperature

Unique structural features

- principle of scaling, ab initio design of materials
- highly crystalline materials
- lowest density of crystalline matter, up to 0.21 g/cm³
- Future applications: adsorbent, container for in situ chemistry, sensor

3. Soft chemistry Reticular syntheses of MOF

Concept for ab initio design:

- 1) Synthesis of SBU 1, 2 with defined topology
- 2) Prediction of framework topology, structure, pore sizes, chirality...

Examples:

Octahedron-Octahedron: α-Po Octahedron-Trig. prism: NiAs

O. M. Yaghi et al. Nature 423, 705 (2003)

3. Soft chemistry Intercalation of layered compounds

Intercalation:

continuous adsorption (desorption) of atoms in holes of structures

Example 1: Hydrides

- salt-like compounds: e. g. MgH₂ (hydrogen storage)
- semiconductors: e. g. LaH₃

Example 2: Graphite

- Electron donors (alkali metals, e. g. KC₈)
- Electron acceptors (NO₃⁻, Br₂, AsF₅...)
- Properties: increase of interlayer spacing, color change, increase of conductivity, change of electronic structure

Example 3: TiS₂ (Cdl₂-type)

- Electron donors (alkali metals, BuLi, organic amines)
- Application: Li-TiS₂-battery

xLi (metal) \rightarrow xLi⁺(solv) +xe⁻ xLi⁺(solv) + TiS₂ + xe⁻ \rightarrow Li_xTiS₂(s)

3. Soft chemistry Filling of zeolites zeolites

Filled microporous materials

Examples:

- Organic molecules + zeolites: highly anisotropic optical materials
- Dyes + zeolites: antenna materials, brilliant pigments (no bleaching)
- Metal clusters + zeolites: hydrochromy, barochromy
- Semiconductors + zeolites: tuning of optical properties
- Polymers + zeolites: formation of quantum wires

4. Nanomaterials2D nanomaterials - physical approaches

- Sputtering
 - originally a method to clean surfaces
 - Ar+-ions are accelerated in an electrical field and "hit" the target
 - consequence: surface atoms are removed from the surface
 - application: SEM, getter-pump (ionization, UHV devices)

4. Nanomaterials2D nanomaterials - chemical approaches

- Epitaxy:
 - thin orientated layers of similar crystal structures
 - e.g. InAs: a=603,6 pm on GaAs: a=565,4 pm, both sphalerite structures
- CVD (Chemical Vapour Deposition)
 - decomposition of molecules in the gas phase by electron beam or laser
 - deposition on suitable substrates
 - e.g. fabrication of LEDs with GaP and GaAs_{1-x}P_x, epitaxial layers are produced by thermal decomposition of compounds like AsH₃, AsCl₃, PH₃, PCl₃, ...

Production of a Ga_{1-x}Al_xAs on GaAs by the MBE process

4. Nanomaterials Formation of 1D nanomaterials

Misfit in double layers → strain relaxation: bending of the layers nanorolls (asbestos etc.)

Silica as hard templates nanorods, nanotubes

highly anisotropic crystal structures (Se, Te, LiMo₃Se₃)

> Amphiphilic molecules as soft templates, self assembly nanorods, nanotubes

