Magnetochemistry

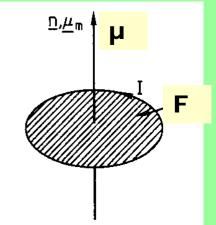
(12.7.06)

H.J. Deiseroth, SS 2006

Magnetochemistry


```
(µ is a vector !)
```

 $\mu = i F [Am^2]$, circular current i, aerea F


 $\mu_{\rm B} = {\rm eh}/{4\pi m_{\rm e}} = 0,9274 \ 10^{-27} \ {\rm Am}^2$

(h: Planck constant, m_e: electron mass)

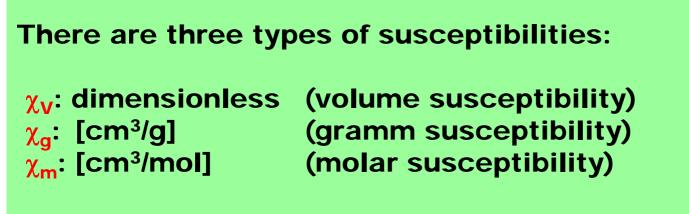
μ_B: "Bohr magneton" (smallest quantity of a magnetic moment)

 \rightarrow for one unpaired electron in an atom ("spin only"):

$$\mu^{s} = 1,73 \ \mu_{B}$$

→ The magnetic moment of an atom has two components a spin component ("spin moment") and an orbital component ("orbital moment").

 \rightarrow Frequently the orbital moment is <u>supressed</u> ("spin-only-magnetism", e.g. coordination compounds of 3d elements)


<u>Magnetisation</u> M and <u>susceptibility</u> χ

M = $(\sum \mu)/V$ $\sum \mu$: sum of all magnetic moments μ in a given volume V, dimension: [Am²/m³ = A/m]

The actual magnetization of a given sample is composed of the "intrinsic" magnetization (susceptibility χ) and an external field H:

 $M = H \chi$ (χ : suszeptibility)

Magnetochemistry

!!!!! χ_m is used normally in chemistry !!!!

Frequently: $\chi = f(H) \rightarrow complications !!$

Magnetochemistry

Diamagnetism

- external field is weakened
- atoms/ions/molecules with closed shells

 $-10^{-4} < \chi_m < -10^{-2} \ cm^3/mol$ (negative sign)

Paramagnetism (van Vleck)

- external field is strengthened
- atoms/ions/molecules with open shells/unpaired electrons

 $+10^{-4} < \chi_{\rm m} < 10^{-1} \, {\rm cm^{3}/mol}$

→ diamagnetism (core electrons) + paramagnetism (valence electrons)

Magnetism of the elements

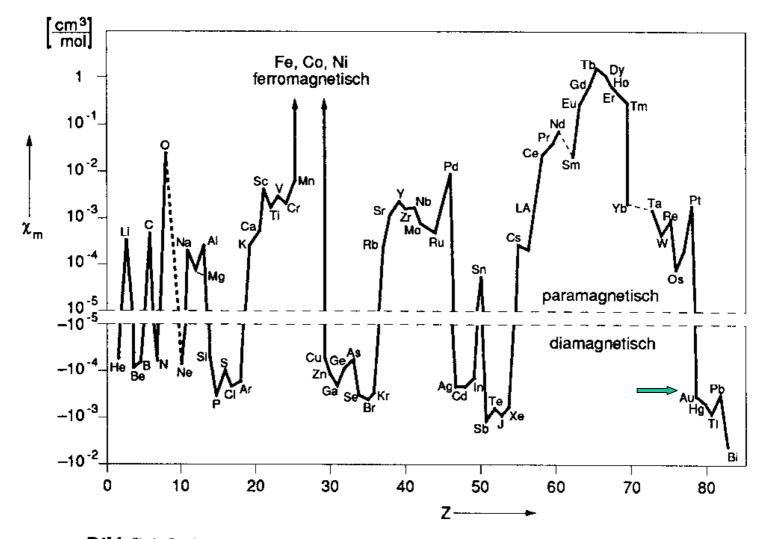
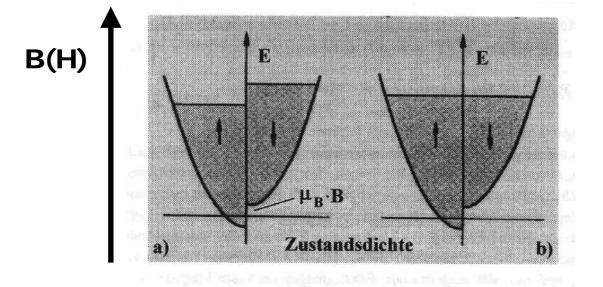


Bild 7.1.3-1: Molare Suszeptibilität der Elemente (nach [15])

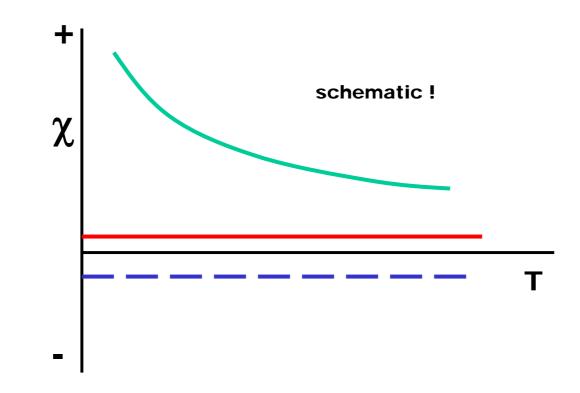
Magnetism of the elements


			Th + 130		U + 410		Pu + 610									
Cs + 27	Ba + 20	La + 110	Hf + 75	Ta + 150	W + 55	Re + 69	Os + 10	lr + 25	Pt + 190	Au - 28	Hg 34,5	Tl - 49	РЬ - 24	Bi 280	Po	
ŘЬ + 17	Sr + 92	Y + 190	Zr + 120	Nb + 210	Mo + 90	Tc	Ru + 44	Rh + 100	Pd + 560	Ag - 20	Cd - 20	in - 13	$Sn a: -30 \beta: +3,1 $	Sb 81	Τe - 41	
K + 19	Ca + 44	Sc + 320	Ti + 150	V + 250	Cr + 165	Mn + 530	Fe Co Ni ferromagnetisch			Cu - 5,5	Zn - 10	Ga - 17	Ge -9	As - 5,5	Se - 26	
Na + 16	Mg + 6 bis 20	A] +17		susceptibilities												
Lî + 26	Be - 9	B - 6,7	Tabelle 24 Magnetismus der Elemente													

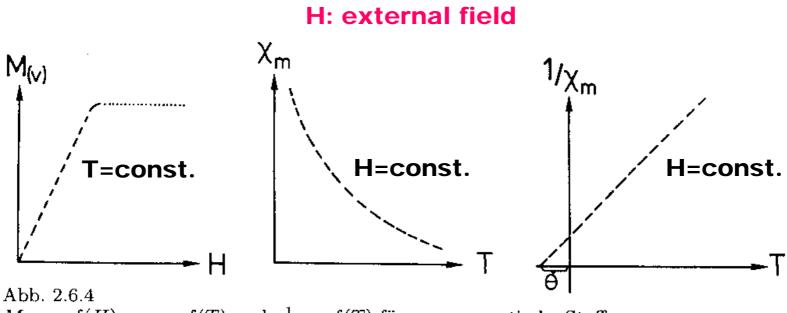
Pauli-Paramagnetism:

 \rightarrow special type of magnetism of the conduction electrons in metals

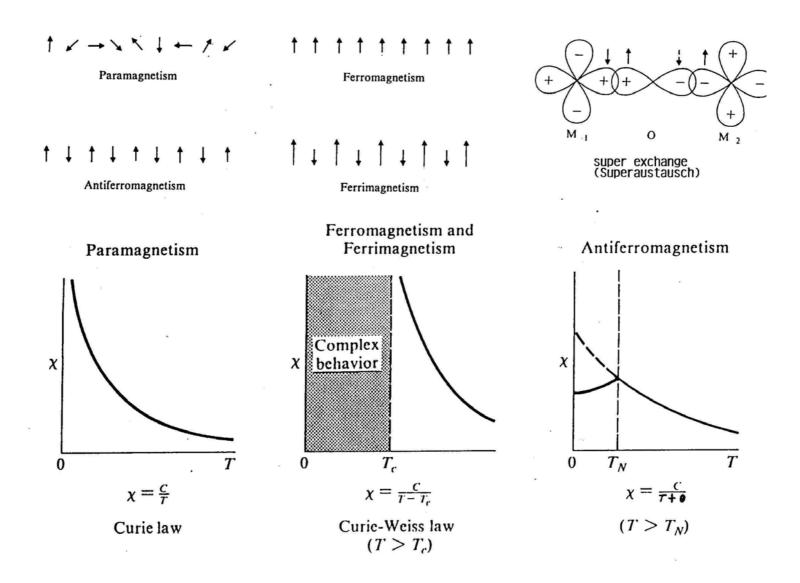
 \rightarrow refers only to the free electrons in the electron gas of a metallic solid)


 $+10^{-6} < \chi_{\rm m} < +10^{-5} \, {\rm cm^{3}/mol}$

Temperature dependence of the magnetic suszeptibility

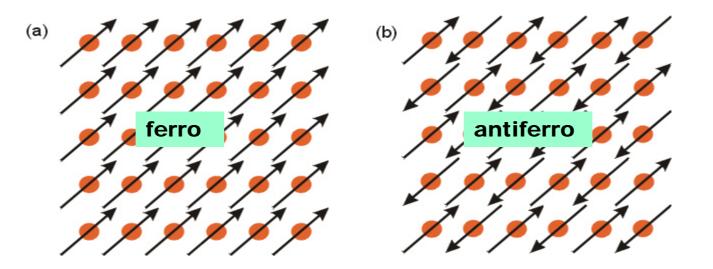

General:

- 1.) Diamagnetism:
- 2.) Paramagnetism:
- independent of temperature Curie- or Curie-Weiss-law
- 3.) Pauli-Paramagnetism: independent of temperature


Curie- und Curie-Weiss-law for paramagnetic samples

Curie:
$$1/\chi = C \cdot T$$
; Curie-Weiss: $1/\chi = C \cdot (T \cdot \Theta)$

 $M_{(v)}=f(H),\,\chi_m=f(T)$ und $\frac{1}{\chi_m}=f(T)$ für paramagnetische Stoffe


Different types of collective magnetism in a solid due to coupling of magnetic moments

Magnetism in solids (cooperative magnetism)

- Diamagnetism and paramagnetism are characteristic of compounds with individual atoms which <u>do not interact</u> <u>magnetically</u> (e.g. classical complex compounds)

- Ferromagnetism, antiferromagnetism and other types of cooperative magnetism originate from an <u>intense</u> <u>magnetical interaction</u> between electron spins of many atoms

- magnetic crystal anisotropy: the magnetism of a single crystal may be anisotropic

- magnetic and structural unit cell may be different

- the magnetic structure of a crystalline sample can be determined with *"thermal neutrons"* (neutrons with a wavelength in the order of magnitude of interatomic distances): de Broglie equation: $\lambda = h/m_n v_n$ (requires neutron radiation of a nuclear reactor)

Temperatures of magnetic phase transitions:

- Curie-temperature (T_c): ferro- and ferrimagnetism

- Neel-temperature: (T_N) : antiferromagnetism

Magnetic structure

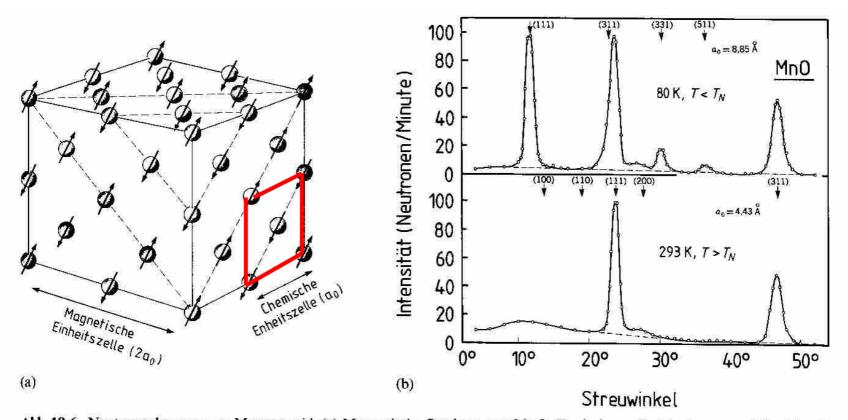


Abb. 18-6. Neutronenbeugung an Manganoxid. (a) Magnetische Struktur von MnO. Es sind nur die Mn-Ionen gezeichnet (nach Kittel 1971). (b) Streuintensität unterhalb und oberhalb der Néel-Temperatur $T_N = 120$ K. Im unteren Teilbild sind die von der magnetischen Ordnung herrührenden Reflexe praktisch verschwunden. Sie entsprechen einer Struktur mit der doppelten Gitterkonstante $2a_0$, weil im Antiferromagnetikum nur jeder zweite Spin in dieselbe Richtung zeigt (siehe Teilbild a), das heißt, sie erscheinen beim halben Streuwinkel ϑ (nach Kittel 1971).

Ferromagnetism

Fe, Co, Ni, Gd, Tb ... EuO, CrCl₂ ...
without an external magnetic field the atomic moments are oriented parallel in large aereas (Weiß domains) (T>T_c)

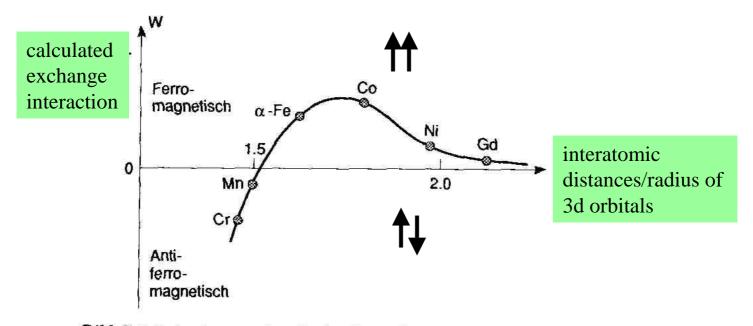
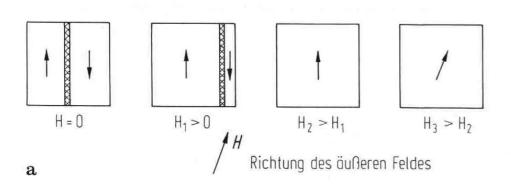
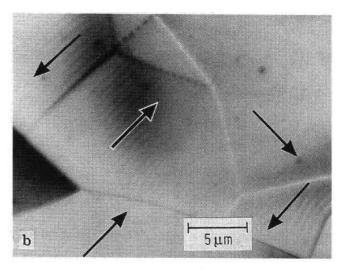




Bild 7.1.4-4: Austauschwechselwirkung der 3d-Elektronen (Bethe-Slater-Kurve): Positive Werte ergeben ein ferromagnetisches-, negative ein antiferromagnetisches Verhalten (nach [63]).

 α -Fe without any magnetic pre-treatment normally does not show any resultant magnetization; exposure to a strong external magnetic field, however, causes it to become ferromagnetic \rightarrow Weiß domains/Bloch-walls

Shift of a Bloch-wall in an external field

Grain boundaries and Bloch walls in $\alpha\mbox{-}Fe$

Magnetization of an initially "non-magnetic" ferro- or ferrimagnet ("hysteresis curve")

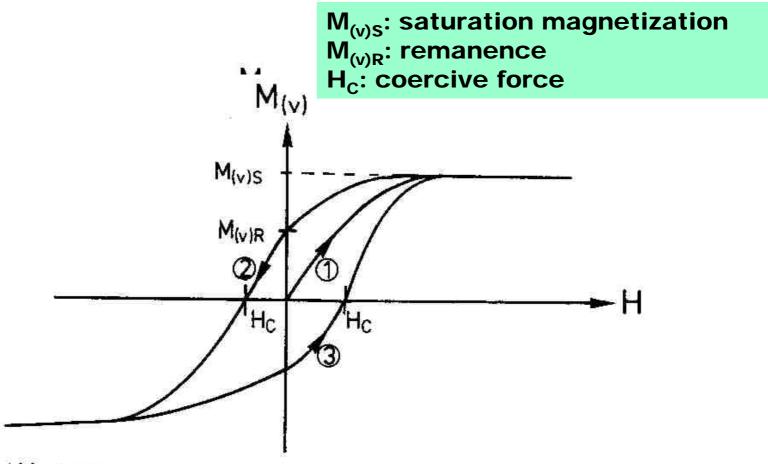
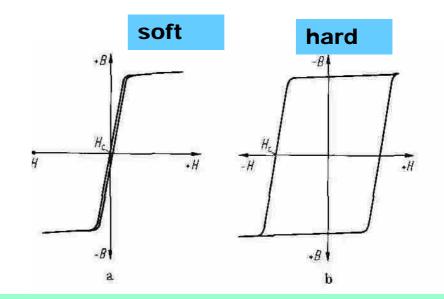
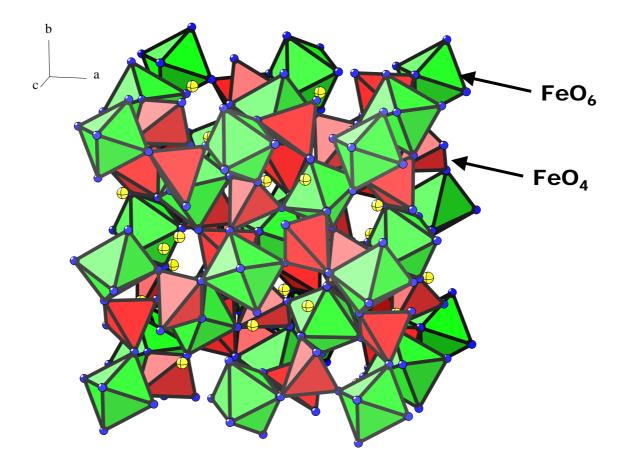



Abb. 2.6.8 $M_{(v)} = f(H)$ für ferro- und ferrimagnetische Stoffe

Soft and hard magnets

<u>Soft magnets</u>: transformers, electromagnets, electric coils...

Hard magnets: sound und videotapes, permanent magnets ...



Metallic soft magnets:

- α -Fe, Ni, Co and some of their alloys - Fe – Si- und Fe – Ni – compounds and alloys (e.g. Fe / 6%Si: no $\alpha \rightarrow \gamma$ -phase transition up to 1400 °C)

<u>Ceramic soft magnets</u>:- "Ferrites": cubic oxide spinels or perowskites, garnets $(Y_3Fe_5O_{12})$ - spinels: the magnetic moments of ions on tetrahedral and octahedral places are anti-parallel

Y-Fe-garnet: Y₃Fe₅O₁₂: Fe³⁺ in tetrahedral and octahedral coordination of O²⁻

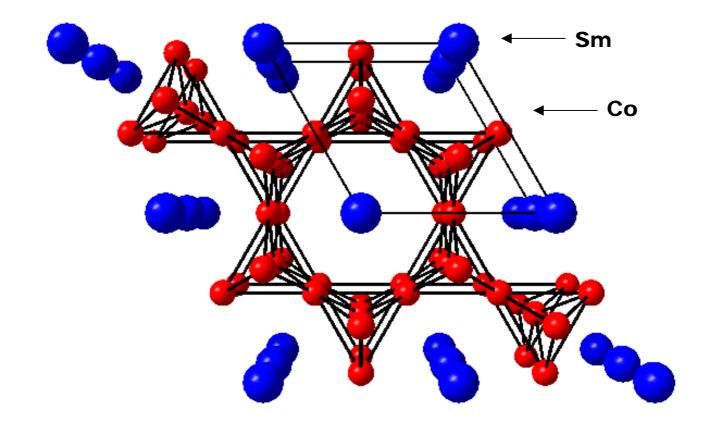


The garnet structure

<u>Garnets</u>: $A_3^{2+}B_2^{3+}Si_3O_{12}$: A=Ca, Mg, Fe, Mn ..., B=AI, Fe, Cr

- Orthosilicates with isolated SiO₄-Tetrahedra
- A²⁺: larger cations with CN=8
- B³⁺: smaller cations with CN=6

Y₃Fe₂Fe₃O₁₂



Metallic Hard magnets

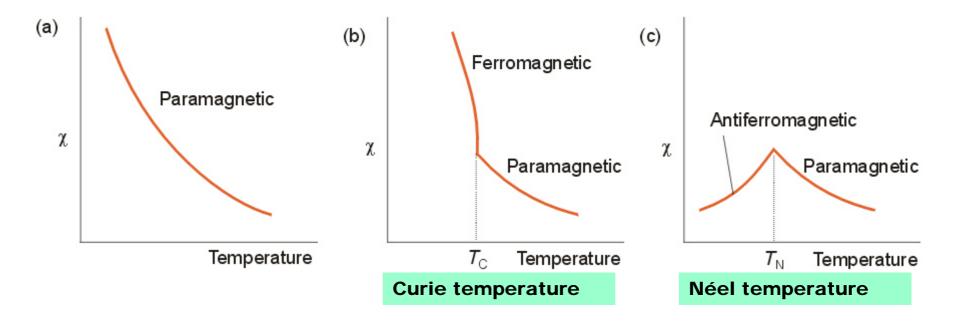
(sophisticated materials pre-treatment, e.g. crystallization in srong magnetic fields)

- applications in loud speakers, deflecting magnets ...
- high saturation magnetization, high coercive force
- "pinning" of Bloch walls by introduction of artificial defects
- a) Fe/Co-alloys, "Permalloy" Fe/Ni alloys)
- b) needle shaped magnetic particles with preferred orientation of the magnetization vector in a matrix (e.g. Al/Ni/Co "Alnico")
- c) SmCo₅ hexagonal structure with strong magnetic anisotropy

Crystal structure of SmCo₅ (CaZn₅-Typ)

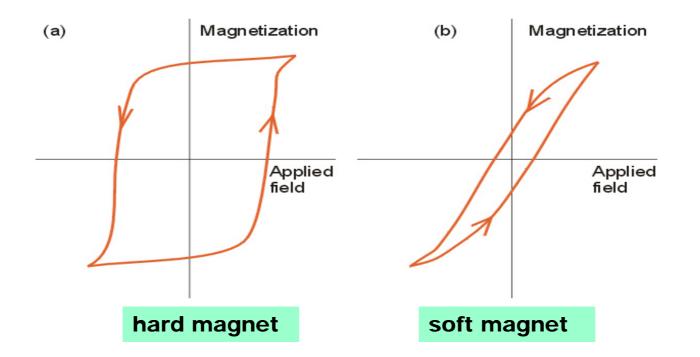
Non-metallic hard magnets

c) hexagonal spinels with preferred orientation of the magnetization vector


- Magnetoplumbite etc.: PbFe₁₂O₁₉: Fe₃O₄-layers separated by Pb²⁺

- Nd₂Fe₁₄B (complicated layered structure)

Magnetism in solids


- <u>Magnetic domain</u>: magnetic moments are coupled in a volume element consisting of a great number of unit cells.

- Below a <u>critical temperature</u> the "<u>magnetization</u>" (M) (\rightarrow <u>magnetic</u> <u>suszeptibility</u> (χ)) for ferromagnets and antiferromagnets show a complex dependence of the <u>temperature</u> (T) and of the <u>strength of</u> <u>an applied external field</u>. Above the critical temperature <u>paramagnetic behaviour</u> occurs.

Magnetism in solids

- Upon cyclic application of an external magnetic field the magnetization changes in characteristic way for different magnetic materials and shows in particular a hysteresis loop

- different fields of applications for hard and soft magnetic materials

- area under the hysteresis loop is proportional to energy loss