Analytisches Rasterelektronenmikroskop

CamScan 44

Elektronen Kanone (W-Kathode)

Wechselwirkungen eines hochenergetischen Elektronenstrahls mit Materie

Prinzip der Bilderzeugung

Probe

Wechselwirkungsvolumen (birnenförmig)

Wovon hängt das Wechselwirkungsvolumen ab?

Fe (30 kV)

Au (20 kV)

AI (20 kV)

Sekundär-Elektronen

- Inelastisch gestreute PE (Primär-Elektronen)
- Energie: < 50 eV
- maximale Emissionstiefe: 5-50 nm
- → Hochauflösungsbilder

Rückstreu-Elektronen:

- Elastisch und inelastisch gestreute PE
- Energie: 50 eV Energie der PE (z.B. 20 keV)
- Maximale Emissionstiefe: **0.1 6µm** (abhängig von der Probe)
- Intensität hängt von der Ordnungszahl der Probe ab
 - (→ Materialkontrastbilder)
- Großes Wechselwirkungsvolumen
 - (→ gering aufgelöste Bilder)

Cu-Draht eingebettet in LötzinnSE-BildBE-Image(hohe Auflösung)(hoher Z-Kontrast)

 $Z_{Pb} > Z_{Sn} > Z_{Cu}$

BE sind weniger empfindlich bezüglich Aufladung

BE-Bild

SE-Bild

Wechselwirkungen eines hochenergetischen Elektronenstrahls mit Materie

Kathoden Lumineszenz

- UV oder sichtbares Licht
- spezieller Detektor notwendig

Charakteristisches Röntgen-Spektrum (ohne Feinstruktur)

Energiebereich der Hauptserien als Funktion der OZ

Energie

Energiebereich der Hauptserien als Funktion der OZ

Energie

Röntgenbremsspektrum

- PE werden abgebremst und geben Energie als hv ab
- E_{max} der Röntgenstrahlung: e × U_{Beschl}

Typisches Röntgen Spektrum (EDX)

Wechselwirkungsvolumen (birnenförmig)

Large area mapping (Röntgenbilder)

SE-Image

Ni-Kαmapping

 $\begin{array}{c} \text{Cu-K}\alpha\text{-} \\ \text{mapping} \end{array}$

Zn-Kαmapping

256x256 pixel

Sekundär-Elektronen-Detektor

Szintillator-Photomultiplier-Detektor (Everhart-Thornley-Detector)

SE-Detektor:

Prinzip eines EDX-Detektors

$$nv + Si \xrightarrow{3,8 eV} Si^+ + e^-$$

e.g. Mn K_α: 5894 eV

5894/3.8 = 1550Elektron-Loch-Paare

- + Hochspannung

Probenpräparation

Spezielle Präparation für nichtleitende Proben:

-Aufbringen einer Metallschicht (sputtering Prozess)

-Aufbringen einer Kohlenstoffschicht (evaporation Prozess)

Goldbeschichtungsgerät

Kohlebeschichtungsgerät

Anwendungen des REM:

I) Hochauflösungsbilder

II) Qualitative und quantitative Analysen

Verzwillingung von Kristallen

Na₂Zn₂(SeO₃)₃ 3H₂O

Kontrolle kleiner Objekte

Carbo Nanotubes

Mag = x610 7um

