Advanced Inorganic Chemistry Part 3: Basic Solid State Chemistry

1. Introduction (resources, aspects, classification)
2. Basic structural chemistry (hard sphere packing)
3. Chemical bonding in solids (electrostatic interactions)
4. Chemical preparation of solids (conventional methods)
5. More complex structures
6. Special structures and materials
7. Structure determination methods

1. Introduction: Textbook and other resources

OXFORD

SHRIVER \& ATKINS

 Inorganic ChemistryFOURTH EDITION

Atkins • Overton • Rourke • Weller • Armstrong
a) Shriver \& Atkins

Ch 3: The structure of simple solids

Ch 6: Physical techniques in Inorganic Chemistry (Diffraction Methods)
Ch 23: Solid State and Materials Chemistry
b) Advanced Inorg. Chemistry

Part 1: Inorganic Molecules Section Structure Determ. Methods

1. Introduction: Special aspects of solid state chemistry

- Close relationship to solid state physics
- Crystal Chemistry: Structure and symmetry of solids, i.e.

Size and packing of atoms: close packed structures (high space
filling), symmetry groups, crystal systems, unit cells

- Physical methods for the characterization of solids
- X-ray structure analysis, electron microscopy, NMR ...
- Thermal analysis, spectroscopy, magnetism, conductivity ...
- Synthesis
- HT-synthesis, hydro-/solvothermal synthesis, soft chemistry
- Crystal growth
- Chemical Vapor Deposition (CVD)

1. Introduction: Why is the solid state interesting?

Most elements and compounds are solid at room temperature

Group	1	2		3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
Period																			
1	$\begin{aligned} & 1 \\ & H \end{aligned}$																		$\begin{gathered} 2 \\ \mathrm{He} \end{gathered}$
2	$\begin{gathered} 3 \\ \mathrm{Li} \end{gathered}$	$\begin{gathered} 4 \\ \mathrm{Be} \end{gathered}$												$\begin{aligned} & 5 \\ & B \end{aligned}$	6	$\begin{aligned} & 7 \\ & \mathrm{~N} \end{aligned}$	8	$\begin{aligned} & 9 \\ & \mathrm{~F} \end{aligned}$	$\begin{aligned} & 10 \\ & \mathrm{Ne} \end{aligned}$
3	$\begin{aligned} & 11 \\ & \mathrm{Na} \end{aligned}$	$\begin{gathered} 12 \\ \mathrm{Mg} \end{gathered}$												$\begin{aligned} & 13 \\ & \text { Al } \end{aligned}$	$\begin{aligned} & 14 \\ & \mathrm{Si} \end{aligned}$	$\begin{gathered} 15 \\ \mathrm{P} \end{gathered}$	$\begin{gathered} 16 \\ S \end{gathered}$	$\begin{aligned} & 17 \\ & \mathrm{Cl} \end{aligned}$	$\begin{aligned} & 18 \\ & \mathrm{Ar} \end{aligned}$
4	$\begin{aligned} & 19 \\ & \mathrm{~K} \end{aligned}$	$\begin{aligned} & 20 \\ & \mathrm{Ca} \end{aligned}$		$\begin{aligned} & 21 \\ & \mathrm{SC} \end{aligned}$	$\begin{gathered} 22 \\ \mathrm{Ti} \end{gathered}$	$\begin{aligned} & 23 \\ & V \end{aligned}$	$\begin{aligned} & 24 \\ & \mathrm{Cr} \end{aligned}$	$\begin{gathered} 25 \\ \mathrm{Mn} \end{gathered}$	$\begin{aligned} & 26 \\ & \mathrm{Fe} \end{aligned}$	$\begin{aligned} & 27 \\ & \mathrm{CO} \end{aligned}$	$\begin{aligned} & 28 \\ & \mathrm{Ni} \end{aligned}$	$\begin{aligned} & 29 \\ & \mathrm{Cu} \end{aligned}$	$\begin{aligned} & 30 \\ & \mathrm{Zn} \end{aligned}$	$\begin{aligned} & 31 \\ & \mathrm{Ga} \end{aligned}$	$\begin{aligned} & 32 \\ & \mathrm{Ge} \end{aligned}$	$\begin{aligned} & 33 \\ & \text { AS } \end{aligned}$	$\begin{aligned} & 34 \\ & \text { Se } \end{aligned}$	$\begin{aligned} & 35 \\ & \mathrm{Br} \end{aligned}$	$\begin{aligned} & 36 \\ & \mathrm{Kr} \end{aligned}$
5	$\begin{aligned} & 37 \\ & \mathrm{Rb} \end{aligned}$	$\begin{aligned} & 38 \\ & \mathrm{Sr} \end{aligned}$		$\begin{aligned} & 39 \\ & Y \end{aligned}$	$\begin{aligned} & 40 \\ & \mathrm{Zr} \end{aligned}$	$\begin{aligned} & 41 \\ & \mathrm{Nb} \end{aligned}$	$\begin{aligned} & 42 \\ & \mathrm{Mo} \end{aligned}$	$\begin{aligned} & 43 \\ & \mathrm{Tc} \end{aligned}$	$\begin{array}{r} 44 \\ \mathrm{Ru} \end{array}$	$\begin{aligned} & 45 \\ & \text { Rh } \end{aligned}$	$\begin{aligned} & 46 \\ & \mathrm{Pd} \end{aligned}$	$\begin{array}{r} 47 \\ \mathrm{Ag} \end{array}$	$\begin{aligned} & 48 \\ & \mathrm{Cd} \end{aligned}$	$\begin{aligned} & 49 \\ & \text { In } \end{aligned}$	$\begin{aligned} & 50 \\ & \mathrm{Sn} \end{aligned}$	$\begin{aligned} & 51 \\ & \mathrm{Sb} \end{aligned}$	$\begin{aligned} & 52 \\ & \mathrm{Te} \end{aligned}$	$\begin{gathered} 53 \\ \mathrm{I} \end{gathered}$	$\begin{aligned} & 54 \\ & \times e \end{aligned}$
6	$\begin{aligned} & 55 \\ & \mathrm{Cs} \end{aligned}$	$\begin{aligned} & 56 \\ & \mathrm{Ba} \end{aligned}$	*	$\begin{aligned} & 71 \\ & \mathrm{Lu} \end{aligned}$	$\begin{aligned} & 72 \\ & \mathrm{Hf} \end{aligned}$	$\begin{aligned} & 73 \\ & \mathrm{Ta} \end{aligned}$	$\begin{aligned} & 74 \\ & \mathrm{~W} \end{aligned}$	$\begin{aligned} & 75 \\ & \mathrm{Re} \end{aligned}$	$\begin{aligned} & 76 \\ & \text { Os } \end{aligned}$	$\begin{aligned} & 77 \\ & \mathrm{Ir} \end{aligned}$	$\begin{aligned} & 78 \\ & \text { Pt } \end{aligned}$	$\begin{array}{r} 79 \\ \mathrm{Au} \end{array}$	$\begin{array}{r} 80 \\ \mathrm{Hg} \end{array}$	$\begin{aligned} & 81 \\ & \mathrm{Tl} \\ & \hline \end{aligned}$	$\begin{aligned} & 82 \\ & \mathrm{~Pb} \end{aligned}$	$\begin{aligned} & 83 \\ & \mathrm{Bi} \end{aligned}$	$\begin{aligned} & 84 \\ & \text { Po } \end{aligned}$	$\begin{aligned} & 85 \\ & \text { At } \end{aligned}$	$\begin{aligned} & 86 \\ & \mathrm{Rn} \end{aligned}$
7	$\begin{aligned} & 87 \\ & \mathrm{Fr} \end{aligned}$	$\begin{aligned} & 88 \\ & \mathrm{Ra} \end{aligned}$	**	$\begin{gathered} 103 \\ \mathrm{Lr} \end{gathered}$	$\begin{gathered} 104 \\ \mathrm{Rf} \end{gathered}$	$\begin{aligned} & 105 \\ & \mathrm{Db} \end{aligned}$	$\begin{aligned} & 106 \\ & \mathrm{Sg} \end{aligned}$	$\begin{gathered} 107 \\ \mathrm{Bh} \end{gathered}$	$\begin{aligned} & 108 \\ & \mathrm{Hs} \end{aligned}$	$\begin{gathered} 109 \\ \text { Mt } \end{gathered}$	$\begin{gathered} 110 \\ \text { Uun } \end{gathered}$	111 Uul	$\begin{aligned} & 112 \\ & \text { Uub } \end{aligned}$	$\begin{aligned} & 113 \\ & \text { Uut } \end{aligned}$	114 Uuq	$\begin{aligned} & 115 \\ & \text { Uup } \\ & \hline \end{aligned}$	$\begin{aligned} & 116 \\ & \text { Uuh } \end{aligned}$	$\begin{aligned} & 117 \\ & \text { Uus } \end{aligned}$	$\begin{aligned} & 118 \\ & \text { UuO } \end{aligned}$
*Lanthanoids			*	$\begin{aligned} & 57 \\ & \mathrm{La} \end{aligned}$	$\begin{aligned} & 58 \\ & \mathrm{Ce} \end{aligned}$	$\begin{aligned} & 59 \\ & \mathrm{Pr} \end{aligned}$	$\begin{gathered} 60 \\ \mathrm{Nd} \end{gathered}$	$\begin{aligned} & 61 \\ & \text { Pm } \end{aligned}$	$\begin{gathered} 62 \\ \mathrm{Sm} \end{gathered}$	$\begin{aligned} & 63 \\ & \mathrm{Eu} \end{aligned}$	$\begin{aligned} & 64 \\ & \mathrm{Gd} \end{aligned}$	$\begin{aligned} & 65 \\ & \mathrm{~Tb} \end{aligned}$	$\begin{aligned} & 66 \\ & \text { Dy } \end{aligned}$	$\begin{aligned} & 67 \\ & \mathrm{Ho} \end{aligned}$	$\begin{aligned} & 68 \\ & \mathrm{Er} \end{aligned}$	$\begin{gathered} 69 \\ \mathrm{Tm} \end{gathered}$	$\begin{aligned} & 70 \\ & \mathrm{Yb} \end{aligned}$		
**Actinoids			**	$\begin{aligned} & 89 \\ & \mathrm{AC} \end{aligned}$	$\begin{aligned} & 90 \\ & \text { Th } \end{aligned}$	$\begin{aligned} & 91 \\ & \mathrm{~Pa} \end{aligned}$	$\begin{aligned} & 92 \\ & U \end{aligned}$	$\begin{aligned} & 93 \\ & \mathrm{~Np} \end{aligned}$	$\begin{aligned} & 94 \\ & \text { Pu } \end{aligned}$	$\begin{gathered} 95 \\ \text { Am } \end{gathered}$	$\begin{array}{r} 96 \\ \mathrm{~cm} \end{array}$	$\begin{aligned} & 97 \\ & \text { Bk } \end{aligned}$	98	$\begin{aligned} & 99 \\ & \text { Es } \end{aligned}$	$\begin{aligned} & 100 \\ & \mathrm{Fm} \end{aligned}$	$\begin{aligned} & 101 \\ & \mathrm{Md} \end{aligned}$	$\begin{aligned} & 102 \\ & \text { No } \end{aligned}$		

1. Introduction: Classifications of solids (examples)

- Amorphous solids, glasses: short range order (no 3D periodicity)
- Covalent solids (e.g. diamond, boron nitride): extreme hardness
- Ionic solids (e.g. NaCl): defects, dislocations, colour centres ... ionic conductivity (e.g. $\alpha-A g I$): dynamical disorder, enhanced diffusion of Ag^{+}ions in an external field, "solid electrolytes"
- Molecular materials (e.g. Elements, MOFs: Metal Organic Frameworks, fullerides)
- Metals (e.g. Cu): positive temperature coefficient of electrical resistivity
- Semiconductors, insulators: band gap, electrical conductivity
- Ionic conductors: ionic conductivity
- Superconductors: "zero resistivity" below T_{c}
- Magnetic materials: hard and soft magnetic materials

2.1 Basic structural Chemistry: Size of atoms Approximation: atoms can be treated like spheres

Metallic radius: $\mathrm{d} / 2$ in a metal (frequently: $C N=12$) in other cases $\mathrm{d} / 2$ in elemental modification stable at ambient temperature

Covalent radius: $d / 2$ in a molecule (single bond)

Ionic radius: reference, e.g. $\mathrm{r}\left(\mathrm{O}^{2-}\right)=$ 140 pm (after Shannon for $\mathrm{CN}=6$)

Van der Waals radius between adjacent molecules

2.1 Basic structural Chemistry

Trends of the atomic radii in the periodic table

- Atomic radii increase on going down a group.
- Atomic radii decrease across a period
- Particularities: Ga < Al (d-block)

2.1 Basics structural Chemistry: Atomic radii

Li	Be											B	C	N	0	F
157	112											88	77	74	66	64
Na	Mg											Al	Si	P	S	Cl
191	160											143	118	110	104	99
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br
235	197	164	147	135	129	137	126	125	125	128	137	155	122	121	117	114
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I
250	215		160	147	140	135	134	134	137	144	152	167	158	141	137	133
Cs 272	Ba 224	$\begin{aligned} & \text { Lu } \\ & 17{ }_{2} \end{aligned}$		Ta 147	W 141	Re 137	Os	Ir 136	Pt 139	Au	Hg	TI 171	Pb	Bi 182		
272				147	141	137	135	136	139	144						
*The values refer o coordinatic number 12 (see Section 3.2).																
$\begin{aligned} & L a-L u \\ & 187-172 \end{aligned}$			"Lanthanide contraction"								Ga: 122 pm!					

2.1 Basic structural Chemistry Change of ionic radii with coordination number

2.1 Basic structural Chemistry: Trends of the ionic radii

- Ionic radii increase on going down a group
- Radii of equal charge ions decrease across a period, c.f. atomic radii
- Ionic radii increase with increasing coordination number (the higher its CN , the bigger the ions are or seem to be!!)
- The ionic radius of a given atom decreases with increasing charge $\left(r\left(\mathrm{Fe}^{2+}\right)>r\left(\mathrm{Fe}^{3+}\right)\right)$
- Cations are usually the smaller ions in a cation/anion combination (exception: $r\left(\mathrm{Cs}^{+}\right)>r\left(\mathrm{~F}^{-}\right)$)

2.1 Basic structural Chemistry: Unit cells

- A parallel sided region of the lattice from which the entire crystal can be constructed by purely translational displacements
- Contents of unit cell represents chemical composition (multiples of chemical formula)
- Primitive cell: simplest cell, contains one lattice point

> Exercise for students already familiar with basic structure types: Consider the unit cell contents and chemical formula of the structures: $\mathrm{NaCl}, \mathrm{ZnS}$ (Sphalerite and Wurtzite), $\mathrm{NiAs}, \mathrm{CaF}_{2}, \mathrm{TiO}_{2}, \mathrm{CaTiO}_{3}$.

2.1 Basic structural Chemistry:

 Unit cells and coordination numbers

1. Cell edges should coincide with symmetry axes or reflection planes
2. The smallest possible cell which fulfills 1 should be chosen

Coordination Number (CN): Number of direct neighbours of a given atom ("first coordination sphere")

2.1 Basic structural Chemistry Unit cells and crystal system

> Repeat symmetry elements and symmetry operations for molecules and solids!

Cubic

Monoclinic

Orthorhombic

Figure 3-2
Shriver \& Atkins Inorganic Chemistry, Fourth Edition
© 2006 by D. F. Shriver, P. W. Atkins, T. L. Overton, J. P. Rourke, M. T. Weller, and F. A. Armstrong

2.1 Basic structural Chemistry: Fractional coordinates

- Rules for marking the position of an atom in a unit cell:
- Possible values for x, y, z are $0<x, y, z<1$
- Atoms are generated by symmetry elements ("equivalent atoms")
- Values < 0: add 1.0, values > 1.0: substract 1.0 (or multiples)
- Equivalent atoms are referenced only once

Projection represent. of an fcc unit cell with the heights of the lattice points

Figure $3-8$
The structure of silicon sulfide $\left(\mathrm{SiS}_{2}\right)$ with the heights of the atom positions

2.1 Basics structural Chemistry

Number of atoms (formula units) per unit cell (Z)

- Atom completely inside unit cell: count $=1.0$
- Atom on a face of the unit cell: count $=0.5$
- Atom on an edge of the unit cell: count $=0.25$
- Atom on a corner of the unit cell: count $=0.125$

Structure of metallic W

Structure of TiO_{2}

Structure of $A B X_{3}$

2.1 Basic structural Chemistry: Wyckoff notation etc.

Crystal data

Formula/crystal system/Space group/Z: CaF ${ }_{2}$ (Fluorite)/cubic/Fm-3m (no. 225)/4
Lattice constant(s)
: $a=5.4375(1) \AA$
Atomic coordinates

Atom	Ox.	Wyck.	\mathbf{x}	\mathbf{y}	\mathbf{z}
Ca1	+2	$4 a$	0	0	0
F1	-1	$8 c$	$1 / 4$	$1 / 4$	$1 / 4$
			$\frac{3}{4}$	$\frac{3}{4}$	$\frac{1}{4}$

2.2 Simple close packed structures (metals): Close packing of spheres in 2- and 3D

hexagonal close packing (hcp)

Cubic close packing (ccp, fcc)
2.2 Simple close packed structures (metals): Close packing of spheres in 2-and 3D Space filling $P=74 \%, C N=12$

(Be, Mg, Zn, Cd, Ti, Zr, Ru ...)
(Cu, Ag, Au, Al, Ni, Pd, Pt...)
2.2 Simple close packed structures (metals) Typical coordination polyhedra of atoms

Hexagonal close packed structure hcp (CN: 12): anti-cuboctahedron

Cubic close packed structure ccp (fcc) (CN: 12): cuboctahedron

2.2 Simple close packed structures The crystal structure of C_{60} !!

2.2 Simple close packed structures (metals) Other types of sphere packings

Primitive packing
(α-Po)

$$
\begin{gathered}
\text { space filling }=52 \% \\
C N=6
\end{gathered}
$$

2.2 Simple close packed structures (metals) Calculation of space filling - example CCP

$$
\text { Space filling }=\frac{\text { Volume occupied by atoms (spheres) }}{\text { Volume of the unit cell }}
$$

2.2 Simple close packed structures (elements) What structures are built by the elements?

Inform yourself about important elemental structures that do not fit into the concept of close packing of spheres: B, C (3-5 modifications), Si, Ge, Sn, P (white, black, red), As, Sb, S, Se, Te, I
2.2 Simple close packed structures Holes in close packed structures

Trigonal holes

Tetrahedral hole TH
Octahedral hole OH

2.2 Simple close packed structures
 Octahedral holes in close packed structures

ccp (fcc)

 hcp

A close packing contains as many octahedral holes as close packed atoms.

2.2 Simple close packed structures

Tetrahedral holes in close packed structures

ccp (fcc)

hcp

A close packing contains twice as many tetrahedral holes as close packed atoms.

2.2 Simple close packed structures

Structure types derived from close packing by systematic filling of holes

Structure type (underlined: close packed atom type)	Examples	Packing	Holes filled
NaCl	AgCl, BaS, CaO, CeSe, $\mathrm{GdN}, \mathrm{NaF}, \mathrm{Na}_{3} \mathrm{BiO}_{4}$. $\mathrm{V}_{7} \mathrm{C}_{8}$	CCP	All octahedra by Na
NiAs	Tis, Cos, Cosb, AuSn	HCP	All octahedra by Ni
CaF_{2}	$\mathrm{CdF}_{2}, \mathrm{CeO}_{2}, \mathrm{Li}_{2} \mathrm{O}, \mathrm{Rb}_{2} \mathrm{O}$, $\mathrm{SrCl}_{2}, \mathrm{ThO}_{2}, \mathrm{ZrO}_{2}, \mathrm{AuIn}_{2}$	CCP	All tetrahedra by F
$\mathrm{Cd} \underline{C l}_{2}$	$\begin{aligned} & \mathrm{MgCl}_{2}, \mathrm{MnCl}_{2}, \mathrm{FeCl}_{2}, \\ & \mathrm{Cs}_{2} \mathrm{O}, \mathrm{CoCOCl}_{2}, \end{aligned}$	CCP	1/2 octahedra by Cd
$\mathrm{CdI}_{\underline{2}}$	$\mathrm{MgBr}_{2}, \mathrm{PbI}_{2}, \mathrm{SnS}_{2}$, $\mathrm{Mg}(\mathrm{OH})_{2}, \mathrm{Cd}(\mathrm{OH})_{2}, \mathrm{Ag}_{2} \mathrm{~F}$	HCP	1/2 octahedra by Cd
Sphalerite (Zns)	$\mathrm{AgI}, \mathrm{BeTe}, \mathrm{CdS}, \mathrm{CuI}$, GaAs, Gap, HgS, InAs, ZnTe	CCP	1/2 tetrahedra by Zn
Wurzite (ZnS)	$\begin{aligned} & \text { AIN, BeO, ZnO, CdS } \\ & (\mathrm{HT}) \end{aligned}$	HCP	1/2 tetrahedra by Zn
$\mathrm{Li}_{3} \mathrm{Bi}$	$\mathrm{Li}_{3} \mathrm{Au}$	CCP	All octah. and tetrahedra by Li

2.2 Simple close packed structures 1st Pauling rule

(1) In most cases a polyhedron of anions is formed about each cation, the cation-anion distance is determined by the sum of ionic radii and the coordination number by the radius ratio: r (cation $) / r($ anion $)$

worst case

Scenario for radius ratios

2.2 Simple close packed structures

Ideal radius ratios for different types of coordination

2.3 Basic structure types: NaCl-type

Crystal data
Formula sum
Crystal system
Space group
Unit cell dimensions
Z
Atomic coordinates

Atom	Ox.	Wyck.	\mathbf{x}	\mathbf{y}	\mathbf{z}
Na	+1	$4 a$	0	0	0
Cl	-1	$4 b$	$1 / 2$	$1 / 2$	$1 / 2$

NaCl
cubic
F m-3 m (no. 225)
$a=5.6250(5) \AA$
4

Figure 3-28
Shriver \& Atkins Inorganic Chemistry, Fourth Edition
© 2006 by D.F. Shriver, P. W. Atkins, T. L. Overton, J. P. Rourke, M. T. Weller, and F. A. Armstrong

Structural features:

- All octahedral holes of CCP filled
- Na is coordinated by $6 \mathrm{Cl}, \mathrm{Cl}$ is coordinated by 6 Na
- One NaCl_{6}-octaherdon is connected to $12 \mathrm{NaCl}_{6}$-octahedra via common edges (how many via common corners and faces ?)

2.3 Basic structure types: Sphalerite-type

Crystal data
Formula sum
Crystal system
Space group
Unit cell dimensions
Z
Atomic coordinates

Atom	Ox.	Wyck.	x	y	z
S	-2	$4 a$	0	0	0
Zn	+2	$4 c$	$1 / 4$	$1 / 4$	$1 / 4$

(a)

ZnS
cubic
F-4 3 m (no. 216)
$a=5.3450 \AA$
4

Figure 3-32
Shriver \& Atkins Inorganic Chemistry, Fourth Edition
© 2006 by D.F. Shriver, P. W. Atkins, T. L. Overton, J. P. Rourke, M. T. Weller, and F. A. Armstrong

Structural and other features:

- Diamond-type structure
- 50% of tetrahedral holes in CCP filled
- Zn is coordinated by 4 S , (tetrahedra, common corners) (how is S coordinated by Zn ?)
- Applications of sphalerite-type structures are important (semiconductors: solar cells, transistors, LED...)

2.3 Basic structure types: Wurzite-type

Crystal data
Formula sum
Crystal system
Space group
Unit cell dimensions Z

Atomic coordinates

Atom	Ox.	Wyck.	x	y	z
$\stackrel{\mathrm{Zn}}{\text { (dto., gen. by } 2_{1}{ }^{2 b}}$			1/3	2/3	0
			2/3	1/3	1/2)
S	-2	$2 b$	1/3	2/3	3/8
(dto.	gen.		2/3	1/3	7/8)

Structural features:

- 50% of tetrahedral holes in HCP filled
- Sequence (S-layers): AB
- Zn is coordinated by 4 S (tetrahedra, common corners)
- (how is S coordinated by Zn ?)

2.3 Basic structure types: CaF $_{2}$-type

Crystal data

Formula sum
Crystal system
Space group
Unit cell dimensions
Z
Atomic coordinates

Atom	Ox.	Wyck.	x	y	z
Ca	+2	$4 a$	0	0	0
F	-1	$8 c$	$1 / 4$	$1 / 4$	$1 / 4$
(dto., gen. by -1		$3 / 4$	$3 / 4$	$3 / 4)$	

CaF_{2} cubic
F m -3 m (no. 225)
$a=5.4375(1) \AA$
4

Structural features:

- All TH of CCP filled
- F is coordinated by 4 Ca (tetrahedron)
- (how is Ca coordinated by F?)

2.3 Basic structure types: CdCl_{2}-type

Crystal data

Formula sum
Crystal system
Space group
Unit cell dimensions
Z
Atomic coordinates

Atom	Ox.	Wyck.	\mathbf{x}	\mathbf{y}	\mathbf{z}
Cd	+2	1 a	0	0	0
Cl	-1	2 c	$0.25(1)$	$0.25(1)$	$0.25(1$
(dto., gen. by -1		$0.75(1)$	$0.75(1)$	$0.75(1))$	

Structural features:

- Layered structure, sequence (CI-layers): ABC
- Cd is coordinated octahedrally by 6 Cl (via six common edges)
- (how is Cl coordinated by Cd ?)
- Polytypes

2.3 Basic structure types: CdI_{2}-type

Crystal data

Formula sum
Crystal system
Space group
Unit cell dimensions
Z
CdI_{2}
trigonal
P-3m1(no. 164)
$a=4.24 \AA, c=6.86 \AA$
1

Atomic coordinates

Atom	Ox.	Wyck.	\mathbf{x}
Cd	+2	$1 a$	0
I	-1	$2 d$	$1 / 3$
(dto., gen. by -1		$2 / 3$	

\mathbf{y}	\mathbf{z}
0	0
$2 / 3$	0.249
$1 / 3$	$0.751)$

Structural features:

- Layered structure, sequence (I-layers): AB
- Cd is coordinated octahedrally by 6 I (via six common edges)
- (how is I coordinated by Cd?)
- Polytypes

2.3 Basic structure types: NiAs-type

Crystal data

Formula sum
Crystal system
Space group
Unit cell dimensions
Z
Atomic coordinates

Atom	Ox.	Wyck.	x	y	z
Ni	+3	2 a	0	0	0
(dto., gen. by -1	0	0	$1 / 2$)		
As	-3	$2 c$	$1 / 3$	$2 / 3$	$1 / 4$
(dto., gen. by -1		$2 / 3$	$1 / 3$	$3 / 4$)	

Structural features:

- All OH of HCP filled
- Ni is coordinated by 6 As (octahedron)
- Metal-metal-bonding (common faces of the octahedra)
- (how is As coordinated by Ni?)
- Type \neq antitype

NiAs
hexagonal
P63/m m c (no. 194)
$a=3.619(1) \AA, c=5.025(1) \AA$ 2

Figure 3-35
Shriver \& Atkins Inorganic Chemistry, Fourth Edition
Q 2006 by D. F. Shriver, P. W. Atkins, T. L. Overton, J.P. Rourke, M. T. Wellet, and F. A. Armstrong

3. Chemical bonding in solids

Bonding models and theories of solids must account for basic properties as:

- Type, stability and distribution of crystal structures
- Mechanism and temperature dependence of the electrical conductivity of insulators, semiconductors, metals and alloys
- Lustre of metals, thermal conductivity and color of solids, ductility and malleability of metals ...

Useful models and theories are e.g.:

- Radius ratio and Pauling rules (ionic solids)
- Concept of lattice enthalpy (ionic solids)
- Band model (various types of solids)
- Kitaigorodskii's packing theory (molecular solids)

3.1 Bond valence, Radius ratio and Pauling rules

- Ionic structures consist of charged, elastic and polarizable speres.
- They are arranged so that cations are surrounded by anions and vice versa, and are held together by electrostatic forces.
- To maximize the electrostatic attraction (the lattice energy), coordination numbers are as high as possible, provided that neighbouring ions of opposite charge are in contact.
- Next nearest anion-anion and cation-cation interactions are repulsive, leading to structures of high symmetry with maximized volumes \rightarrow attraction vs repulsion!
- The valence of an ion is equal to the sum of the electrostatic bond strengths between it and adjacent ions of opposite charge.

3.2 Lattice enthalpy of ionic solids

The lattice enthalpy is the standard molar enthalpy change for the following process:

$$
M_{(\text {gas })}^{+}+X_{(\text {gas })}^{-} \rightarrow M X_{(\text {solid })} \quad \Delta H_{L}: \text { lattice enthalpy }
$$

Because the formation of a solid from a "gas of ions" is always exothermic lattice enthalpies (defined in this way !!) are usually negative numbers.

If entropy considerations are neglected the most stable crystal structure of a given compound is the one with the highest lattice enthalpy.
ΔH_{L} can be derived from a simple electrostatic model or the Born-Haber cycle

3.2 Lattice enthalpy determined by the Born-Haber cycle

After Hess (and the 1. set of thermodynamics) reaction enthalpy is independent of the reaction path. For the formation of an ionic solid $M X$ this means:

with: $\quad \Delta H_{B}=\Delta H_{A M}+\Delta H_{A X}+\Delta H_{I E}-\Delta H_{E A}+\Delta H_{L}$
$\Delta H_{A M}$ and $\Delta H_{A X}$: enthalpy of atomisation to gas of M and X (\sim enthalpy of sublimation for M and $\frac{1}{2}$ of the enthalpy of dissoziation for X_{2})
$\Delta H_{I E}$ and $\Delta H_{E A}$: enthalpy of ionisation of M and electron affinity of $X\left(-\Delta H_{E A}=\Delta H_{I A}\right)$ ΔH_{B} and $\Delta H L$: enthalpy of formation and lattice enthalpy

3.2 Lattice enthalpy determined by the Born-Haber cycle

A Born-Haber diagram for KCl
(all enthalpies: $\mathrm{kJ} \mathrm{mol}^{-1}$ for normal conditions \rightarrow standard enthalpies)

Standard enthalpies of

- sublimation, $\Delta \mathrm{H}_{A x}$: $+89(\mathrm{~K})$
- ionization, $\Delta H_{I E}:+425(\mathrm{~K})$
- dissoziation, $\Delta \mathrm{H}_{A M}$: $+244\left(\mathrm{Cl}_{2}\right)$
- electron affinity, $-\Delta H_{E A}$: -355 (Cl)
- lattice enthalpy, $\Delta H_{L}:-x=-719$
- enthalpy of formation, ΔH_{B} : -438 (for KCl)

The harder the ions, the higher ΔH_{B}

3.3 Calculation of lattice enthalpies

$$
\Delta \mathrm{H}_{L}^{0}=V_{A B}+V_{\text {Born }}
$$

$V_{A B}=$ Coulomb (electrostatic) interaction between all cations and anions treated as point charges (Madelung part of lattice enthalpy ("MAPLE")
$V_{\text {Born }}=$ Repulsion due to the overlap of electron clouds (Born repulsion)

3.3 Calculation of lattice enthalpies (MAPLE)

Coulombic contributions to lattice enthalpies, MADELUNG Part of Lattice Enthalpy, atoms treated as point charges)

$$
V_{A B}=-A N_{A}\left(\frac{z_{+} Z_{-} e^{2}}{4 \pi \varepsilon_{0} r_{A B}}\right.
$$ an ion pair

$V_{A B}$: Coulomb potential (electrostatic potential)
A: Madelung constant (depends on structure type)
N_{A} : Avogadro constant
z: charge number
e e: elementary charge
ε_{0} : dielectric constant (vacuum permittivity)
$r_{A B}$: shortest distance between cation and anion

3.3 Calculation of the Madelung constant

typical for 3D ionic solids:
Coulomb attraction and repulsion

Madelung constants:
CsCl: 1.763
$\mathrm{NaCl}: 1.748$
ZnS: 1.641 (wurtzite) ZnS: 1.638 (sphalerite) ion pair: 1.0000 (!)
$=1.748 \ldots(\mathrm{NaCl})$
(infinite summation)

3.3 Born repulsion ($V_{\text {Born }}$)

(Repulsion arising from overlap of electron clouds since atoms do not behave as point charges)

Because the electron density of atoms decreases exponentially towards zero at large distances from the nucleus the Born repulsion shows the same behaviour
approximation:

$$
V_{\text {Born }}=\frac{B}{{r_{A B}}^{n}} N_{A}
$$

B and n are constants for a given atom type; n can be derived from compressibility measurements (~ 8)

3.3 Total lattice enthalpy

(Coulomb interaction and Born repulsion)

$$
\begin{aligned}
& {\Delta \mathbf{H}_{L}^{0}=V_{A B}+V_{B o r n}}_{V_{A B}=-A N_{A} \frac{Z_{+} Z_{-} e^{2}}{4 \pi \varepsilon_{0} r_{A B}}}^{V_{B o r n}=\frac{B}{r_{A B}^{n}} N_{A}}
\end{aligned}
$$

3.3 Total lattice enthalpy

(Coulomb interaction and Born repulsion)

$$
\Delta \mathrm{H}_{t}^{0}=V_{\mathrm{AB}}+V_{\mathrm{Bm}}
$$

$$
V_{A B}=-A N_{A} \frac{z_{+} z_{-} e^{2}}{4 \pi \varepsilon_{0} r_{A B}}
$$

$$
V_{\text {Born }}=\frac{B}{r_{A B}{ }^{n}} N_{A}
$$

$$
\Delta \mathrm{H}_{L}^{0} \Rightarrow \operatorname{Min} .\left(V_{\text {AB }}+V_{\text {Boon }}\right)
$$

(set first derivative of the sum to zero)

$$
\Delta \mathrm{H}_{L}^{0}=-A \frac{Z_{+} Z_{-} e^{2}}{4 \pi \varepsilon_{0} r_{0}} N_{A}\left(1-\frac{1}{n}\right)
$$

3.3 Total lattice enthalpy (Coulomb interaction and Born repulsion)

$$
\Delta \mathrm{H}_{L}^{0}=\operatorname{Min} .\left(V_{A B}+V_{\text {Boom }}\right)
$$

$$
\Delta \mathrm{H}_{L}^{0}=-A \frac{Z_{+} Z_{-} e^{2}}{4 \pi \varepsilon_{0} r_{0}} N_{A}\left(1-\frac{1}{n}\right)
$$

Lattice enthalpies ($\mathrm{kJ} \mathrm{mol}^{-1}$) by Born-Haber cyle and (calculated) $\mathrm{NaCl}:-772$ (-757); CsCl: -652 (-623) ...

Applications of lattice enthalpy calculations:
\rightarrow lattice enthalpies and stabilities of "non existent" compounds and calculations of electron affinity data (see next transparencies)
\rightarrow Solubility of salts in water (see Shriver-Atkins)

3.3 Lattice enthalpy (Calculation for NaCl)

$$
\Delta \mathrm{H}_{L}^{0}=-A \frac{z_{+} z_{-} e^{2}}{4 \pi \varepsilon_{0} r_{0}} N_{A}\left(1-\frac{1}{n}\right)
$$

$\varepsilon_{0}=8.854 \times 10^{-12} \mathrm{C}^{2} / \mathrm{Jm} ; \quad e=1.602 \times 10^{-19} \mathrm{C} ; \quad N_{A}=6.023 \times 10^{23} \mathrm{~mol}^{-1}$
$A=1.748 ; \quad r_{0}=2.8 \times 10^{-10} \mathrm{~m} ; \quad \mathrm{n}=8$ (Born exponent)
$1 / 4 \pi \varepsilon_{0}=8.99 \times 10^{9} \mathrm{Jm} / \mathrm{C}^{2}$
$e^{2} \mathrm{~N}_{\mathrm{A}}=1.542 \times 10^{-14} \mathrm{C}^{2} / \mathrm{mol}$
$\Delta H_{L}=-1.386 \times 10^{-5} \times A / r_{0} \times(1-1 / n) \mathrm{Jmol}^{-1}$ (for univalent ions!)
Dimensions: $\left(C^{2} \mathrm{Jm}\right) /\left(C^{2} \mathrm{~m} \mathrm{~mol}\right)=\mathrm{J} / \mathrm{mol}$
$\mathrm{NaCl}: \quad \Delta H_{L}{ }^{\prime}=-865 \mathrm{~kJ} \mathrm{~mol}^{-1}$ (only MAPLE)
$\Delta H_{L}{ }^{\prime \prime}=-757 \mathrm{~kJ} \mathrm{~mol}^{-1}$ (including Born repulsion)
$\Delta \mathrm{HL}=-772 \mathrm{~kJ} \mathrm{~mol}-1$ (measured)
Please note that covalent contributions are not included in the calculations, e.g. $\mathrm{NaCl}:-772$ (-757); CsCl: -652 (-623) for the measured (calculated) values.

3.3 Lattice enthalpy

Comparison of theoretical and experimental (Born-Haber cycle) lattice enthalpies for some rocksalt structures

	$\begin{aligned} & \Delta H_{\mathrm{L}}^{\text {calc }} / \\ & \left(\mathrm{kJ} \mathrm{~mol}^{-1}\right) \end{aligned}$	$\begin{aligned} & \Delta H_{\mathrm{l}}^{\mathrm{exp}} / \\ & \left(\mathbf{k} \mathrm{mol}^{-1}\right) \end{aligned}$	$\begin{aligned} & \left(\Delta H_{\mathrm{L}}^{\text {exp }}-\Delta H_{\mathrm{L}}^{\text {calc }}\right) / \\ & \left(\mathrm{kJ} \mathrm{~mol}^{-1}\right) \end{aligned}$
LiF	1029	1030	6
LiCl	834	853	19
LiBr	788	807	19
Lil	730	757	27
AgF	920	953	33
AgCl	832	903	71
AgBr	815	895	80
Agl	777	882	105

Table 3-9
Shriver \& Atkins Inorganic Chemistry, Fourth Edition
© 2006 by D. F. Shriver, P. W. Atkins, T.L. Overton, J.P. Rourke, M. T. Weller, and F. A. Armstrong

4. Chemical preparation of solids

Possible reaction paths between two solid grains A and B are

\square Gas phase diffusion	\square Interface diffusion
\square Volume diffusion	\square Surface diffusion

For solid state reactions, the real structure, i.e. defects (imperfections) of (crystalline) solids are important.

4. Chemical preparation of solids

Real structure (defects, imperfections) of crystals

4. Chemical preparation of solids Point defects (imperfections) in solids

Schottky defects: vacancies, missing ions move to the surface (can be cations or anions)
Frenkel defects: vacancies, missing ions on interstitial positions (cations only)
Defects are formed spontaneously (10^{5} to 10^{20} per cm^{-1} at 400 K) and are of paramount importance for the diffusion of ions and atoms in solids.

4. Chemical preparation of solids

Because of the small diffusion coefficients of ions or atoms in a solid at room temperature (10^{-13} to $10^{-6} \mathrm{~cm}^{2} \mathrm{~s}^{-1}$), special preparation methods and high temperatures are necessary.

4. Conventional chemical preparation methods

Conventional preparation methods in solid state chemistry are:

1 Chemical transport reaction
2 Bridgman-Stockbarger process
3 Floating zone melting process
4 Czochralski process
5 Verneuil process
6 Hydro(solvo)thermal synthesis
7 Chemical Vapor Deposition (CVD)

4.1 Chemical transport reaction

Chemical Transport: A solid is dissolved in the gas phase at one place (with T=T1).
By reaction with a transporting agent (e.g. I_{2}) it is condensed again at another place (with $T=T 2$).

Trace of a transporting agent
(e.g. I_{2})

Whether T1 < T2 or T1 > T2 depends on the thermochemical balance of the reaction (remember: Le Chatelier principle?)! Transport can proceed from higher to lower or from lower to higher temperature.

4.1 Chemical transport reaction

Transport direction

$$
\text { hot } \rightarrow \text { cold } \quad \text { or } \quad \text { cold } \rightarrow \text { hot }
$$

depends on the enthalpy of the transport reaction

$$
A_{(\text {solid) }}+B_{\text {(gas) }} \leftrightarrow A B_{\text {(gas) }}+\Delta H
$$

$\Delta H>0$ (endothermic): hot \rightarrow cold $\quad \Delta H<0$ (exothermic): cold \rightarrow hot

Some examples for transport reactions:

\[

\]

Main application: Purification and crystallisation of solids small crystals (\sim mm size)

4.2 Growth of single crystals:

Bridgman-Stockbarger process (moving temperature gradient)

4.3 Zone melting (floating zone refinement)

- A small slice of a rod shaped sample is molten, moved continuously along the rod and shifted to its end
- Impurities normally dissolve preferably in the melt provided (segregation coefficient)

$$
k=c_{\text {solid }} / c_{\text {liquid }}
$$

c : concentration of an impurity
Only impurities with $k<1$ can be removed by zone melting !!

Bild 6.13. Prinzip der Einkristallherstellung nach dem tiegelfreien Zonenschmelzen (floating zone technique)
1 Ziehstange
2 Stabhalterung
3 polykristalliner Ausgangsstab
Schmelzzone
5 wassergekühlter Induktor
6 Einkristallkeim
Keimhalter

4.4 Czochralski process: Si (!)

A rotating seed crystal (e.g. Si) is raised slowly from a melt of equal composition (which is rotated in the opposite direction)

4.4 Growth of big single crystals (e.g. Si)

Abb. 1: Großer Silizium-Einkristall mit hoher Perfektion des Kristallbaus und extremer chemischer Reinheit. (Werkfoto der Wacker-Chemitronic, Burghausen; ich danke Dr. E. Lutz für dieses

4.5 Groth of single crystals: Verneuil process

- Preferably for high melting oxides (T > 2000 K)
- Powdered sample is blown into an oxyhydrogen gas burner

Synthetic corundum crystals obtained by the Verneuile process

Figure 5.1 A system for the Verneuil growth of oxidic materials. Note that the burner is composed of three coaxial tubes. Some workers use more tubes, and there are also designs using many small parallel tubes. With these it is possible to produce wider flames, and by having independent controls on various sets of tubes it is possible to optimize the heat input to give a nearly flat growth face on a large crystal.

4.6 Hydrothermal synthesis

Chemical transport in supercritical aqueous solution ($\mathrm{H}_{2} \mathrm{O}: \mathrm{T}_{\mathrm{k}}=374^{\circ} \mathrm{C}, \mathrm{p}_{\mathrm{k}}=217,7 \mathrm{~atm}$)

Autoclave for the growth of ${\underline{\mathrm{SiO}_{2}}}_{2}$ single crystals (\rightarrow quartz)

1500 bar, T - gradient $400 \rightarrow 380^{\circ} \mathrm{C}$
1: nutrient (powder), 2: seed crystal, 3: mechanical fixing of crystal 4: product crystal

Lit.: "Die Rolle der Hydrothermalsynthese in der präparativen Chemie" A. Rabenau, Angew. Chem. 97 (1985) 1017

4.7 Preparation of nanomaterials 2D nanomaterials - synthesis (CVD)

CVD (Chemical Vapor Deposition): General term for a variety of methods to deposit a range of solid materials on a target by decomposition of suitable gas phase precursor compounds. \rightarrow semiconducing, ceramic, electrooptic etc materials.

5.1 More complex structures: Rutile $\left(\mathrm{TiO}_{2}\right)$

Crystal data
Formula sum
Crystal system
Space group
Unit cell dimen Z

Atomic coordinates

Atom	Ox.	Wyck.	\mathbf{x}	\mathbf{y}	\mathbf{z}
Ti1	+4	$2 a$	0	0	0
O1	-2	$4 f$	$0.30469(9)$	$0.30469(9)$	

Structural features:

- hcp arrangement of $\mathrm{O}, 1 / 2$ of OH filled with Ti
- mixed corner and edge sharing of TiO_{6}-octahedra
- columns of trans edge sharing TiO_{6}-octahedra, connected by common corners
- important application: white pigment

5.2 More complex structures: ReO_{3}

Crystal data

Formula sum
Crystal system
Space group
Unit cell dimensions
Z 1

Atomic coordinates
ReO_{3}
cubic
Pm-3m(no. 221)
$a=3.7504(1) \AA$

Atom	Ox.	Wyck.	\mathbf{x}	\mathbf{y}	\mathbf{z}
$\operatorname{Re} 1$	+6	$1 a$	0	0	0
O1	-2	$3 d$	$1 / 2$	0	0

Structural features:

- not a close packing (ccp of O and vacancies)
- ReO_{6} octahedra connected by six common corners
- large cavities at $0,0,0 \ldots$
- fractional filling in 0,0,0 $\left(\mathrm{A}_{1-\mathrm{x}} \mathrm{WO}_{3}\right.$ tungsten bronze)

5.3 More complex structures: Perovskite $\left(\mathrm{SrTiO}_{3}\right)$

Crystal data
Formula sum
Crystal system
Space group
Unit cell dimensions
Z
SrTiO_{3}
cubic
Pm-3 m (no. 221)
$a=3.9034(5) \AA$
1

Atomic coordinates

Atom	Ox.	Wyck.	\mathbf{x}	\mathbf{y}	\mathbf{z}
Sr1	+2	$1 a$	0	0	0
Ti1	+4	$1 b$	$1 / 2$	$1 / 2$	$1 / 2$
O1	-2	$3 c$	0	$1 / 2$	$1 / 2$

Structural features:

- filled ReO_{3} phase, $\mathrm{CN}(\mathrm{Sr})=12$ (cuboctahedron), CN (Ti) = 6 (octahedron)
- many distorted (non-cubic) variants
- many defect variants (HT-superconductors, $\mathrm{YBa}_{2} \mathrm{Cu}_{3} \mathrm{O}_{7-\mathrm{x}}$)
- hexagonal variants and polytyps

5.4 More complex structures: Spinel $\left(\mathrm{MgAl}_{2} \mathrm{O}_{4}, \mathrm{Fe}_{3} \mathrm{O}_{4}\right)$

Crystal data

Formula sum
Crystal system
Space group
Unit cell dimensions $a=8.0625(7) \AA$
Z
Atomic coordinates

Atom	Ox.	Wyck.	\mathbf{x}	\mathbf{y}	\mathbf{z}
Mg1	+2	$8 a$	0	0	0
Al1	+3	$16 d$	$5 / 8$	$5 / 8$	$5 / 8$
O1	-2	$32 e$	0.38672	0.38672	0.3867

ICSD database: ~100.000 inorganic crystal structures

Structural features:

- distorted CCP of O
- Mg in tetrahedral holes (25\%)
- Al in octahedral holes (50\%)
- Inverse spinel structures $\mathrm{Mg}_{\text {TH }} \mathrm{Al}_{2 \mathrm{OH}} \mathrm{O}_{4} \rightarrow \mathbf{I n}_{\text {TH }}(\mathrm{Mg}, \mathrm{In})_{\mathrm{OH}} \mathrm{O}_{4}$
- Application: ferrites (magnetic materials)

6.1 Special structures and materials: Silicates

Structural features:

- fundamental building unit: SiO_{4} tetrahedron
- isolated tetrahedra or connection via common corners

$14\left[\mathrm{SiO}_{4}\right]^{4-}$

$$
16\left[\mathrm{Si}_{6} \mathrm{O}_{18}\right]^{12-}
$$

Cyclosilicate
$\left[\mathrm{Si}_{6} \mathrm{O}_{12 / 1} \mathrm{O}_{12 / 2}\right.$]

$17\left[\mathrm{SiO}_{3}\right]_{n}$

6.1 Special structures and materials: Silicates

6.1 Special structures and materials: Silicates

a) crystallline silicate
b) quartz glass $\left(\mathrm{SiO}_{2}\right)$
c) silicate with network modifier

00

- Si
- Na, K, Ca
not shown:
glass ceramic: partially crystallized glass; crystalline parts < 50 nm ;
extreme hardness and temperature resistance

6.2 Special structures and materials: zeolithes

Table 13.6 Some uses of zeolites

Function	Application
Ion exchange	Water softeners in detergents
Absorption of molecules	Selective gas separation Gas chromatography
Solid acid	Cracking high molar mass hydrocarbons for fuel and petrochemical intermediates Shape-selective alkylation and isomerization of aromatics for petroleum and polymer intermediates

Table 13-6
Shriver \& Atkins Inorganic Chemistry, Fourth Edition
© 2006 by D. F. Shriver, P. W. Atkins, T. L. Overton, J. P. Rourke, M. T. Weller, and F. A. Armstrong

6.3 Special structures and materials: Intermetallic compounds

Intermetallic compounds are alloys with structures different from either component (e.g. Laves phases, Zintl phases, Hume-Rothery phases (brass))

In alloys coordination numbers of $12,14,16,20$ and higher are very common!

CN 12
Icosahedron

CN 16
Friauf polyhedron

Bergman cluster: 104 atoms; three shells with icosahedral symmetry

6.4 Special structures and materials: Zintl phases

Experimental observation:
element 1 + element $2 \rightarrow$ compound (liquid ammonia) element 1: alkali, alkaline-earth (electropositive) element 2: $\mathrm{Ga}-\mathrm{Tl}, \mathrm{Si}-\mathrm{Pb}, \mathrm{As}-\mathrm{Bi}$...(less electropositive) e.g. $\mathrm{Na}^{+} \mathrm{Tl}^{-}, \mathrm{Ca}^{2+} \mathrm{Si}^{2-}$

Properties of the compounds:

- deeply colored
- soluble clusters in liquid ammonia
- fixed composition, valence compounds

- The structure of the anions follows the octet rule

The Zintl-rule (,08-N-rule")

- The number of bonds of each anion is $8-\mathrm{N}$ ($N=$ number of valence electrons of the anion)
- The anions adopt structures related to the elements of group N

6.4 Special structures and materials: Zintl phases

The crystal structure of the Zintl phase KGe

7. Structure determination methods

For the structure determination methods see part Inorganic Molecules

