Analysis/determination of the crystal/molecular structure of a solid with the help of X-rays or neutrons means (because of the 3D periodicity of crystals): Determination of

- the geometry (lattice constants a, b, c, α , β , γ)
- the symmetry (space group)
- the content (typ, site x_j, y_j, z_j and thermal parameters B_j of the atoms j)

of the unit cell of a crystalline compound and their analysis/interpretation with respect to chemical or physical problems or questions.

is based on diffraction of electromagnetic radiation or neutrons of suitable energies/wavelengths/velocities and one needs:

- a crystalline sample (powder or single crystal, V~0.01mm³)
- an adequate electromagnetic radiation ($\lambda \sim 10^{-10}$ m)
- some knowledge of properties and diffraction of radiation
- some knowledge of structure and symmetry of crystals
- a diffractometer (with point and/or area detector)
- a powerful computer with the required programs for solution, refinement, analysis and visualization of the crystal structure
- some chemical feeling for interpretation of the results

If a substance is irradiated by electromagn. Radiation or neutrons of suitable wavelength, a small part of the primary radiation (~ 10^{-6}) is scattered by the electrons or nuclei of the atoms /ions/molecules of the sample elastically ($\Delta E = 0$) and coherently ($\Delta \phi = \text{konstant}$) in all directions. The resulting scattering/diffraction pattern **R** is the Fourier transform of the elektron/scattering distribution function ρ of the sample and vice versa.

The shape of the resulting scattering/diffraction pattern depends on the degree of order of the sample.

B. X-ray scattering diagram of a crystalline sample

crystal powder orientation statistical, λ fixed \Rightarrow cones of interference

Debye-Scherrer diagram

single crystal orientation or λ variable \Rightarrow dots of interference (reflections)

precession diagram

Why that?

Diffraction of X-rays or neutrons at a crystalline sample (single crystal or crystal powder)

X-rays scattered from a crystalline sample are <u>not totally extinct</u> only for those directions, where the <u>scattered rays are _in phase</u>^{*}. R(S) und $I(\theta)$ therefore are periodic functions of _Bragg reflections^{*}.

Bragg equation: $n \cdot \lambda = 2d \cdot \sin \theta$ or $\lambda = 2d_{(hkl)} \cdot \sin \theta_{(hkl)}$

Basic equation of X-ray analysis: Bragg equation

Lattice planes: Why are they important?

Question: How are directions and planes in a regular lattice defined ?

Bragg equation: $n\lambda = 2d \sin\theta$ $\lambda = 2d_{(hkl)} \sin\theta_{(hkl)}$

7

Lattice plane series: Miller indices hkl, d values

(X-ray) diffraction of a crystalline sample (single crystal or crystal powder) detector (film, imaging plate) $I(\theta)$ $\lambda = 2d_{hkl} \cdot \sin\theta_{hkl}$ (Bragg) \vec{s}_0 : WVIB scattered beam \vec{s} : WVSB; $|\vec{s}| = |s_0| = 1/\lambda$ (or 1) $\vec{S} = \vec{s} - \vec{s}_0$ S: Scattering Vector \vec{S}_0 $\vec{S} = \vec{H} (Bragg)$ S₀ incident beam stop x-ray sample beam source $n \cdot \lambda = 2d \sin \theta$ $S = 2sin\theta_{hkl}/\lambda = 1/d_{hkl} = H$

Fourier transform of the electron density distribution

sample

$$\rho(\vec{r}) = \frac{\int_{V} \rho(\vec{r}) \exp(2\pi i \vec{r} \cdot \vec{S}) dV}{\rho(\vec{r}) = \frac{1}{V} \int_{V^*} R(\vec{S}) \exp(-2\pi i \vec{r} \cdot \vec{S}) dV^*}$$

$$diffr. pattern \qquad R \neq 0 \\ only if \qquad \vec{S} = \vec{H}$$

: scattering vector \equiv vector in Fourier (momentum) space

Analysis/determination of the crystal/molecular structure of a crystalline solid with the help of X-rays or neutrons therefore means:

Determination of

- the geometry (lattice constants a, b, c, α , β , γ)
- the symmetry (space group)
- the content (type, site x_j, y_j, z_j and thermal parameters B_j of the atoms j)

of the unit cell of that crystalline compound from the scattering/diffraction pattern R(S) or $I(\theta)$ or I(hkl)How does that work?

- The geometry (lattice constants a, b, c, α , β , γ) of the unit cell/ compond one can get from the geometry of the diffraction pattern, i.e. from the site of the reflections (diffraction angles θ for a powder; "Euler angles" θ , ω , φ , χ for a single crystal)
- The symmetry (space group) one can get from the symmetry of the reflections and the systematically extinct reflections,
- The content of the unit cell (typ, site x_j , y_j , z_j and thermal parameters B_j of the atoms j) one can get from the intensities I(hkl) of the reflections and the respective phases α (hkl).

 $|Fo(hkl)| \approx (I(hkl))^{1/2} \quad Fc(hkl) = \Sigma f_j \cdot exp(2\pi i(hx_j + ky_j + lz_j))$ $\delta(xyz) = (1/V) \cdot \Sigma |Fo(hkl)| \cdot exp(i\alpha(hkl) \cdot exp(-2\pi i(hx + ky + lz)))$

The structure factor is named Fo(hkl), if observed, i.e. derived from measured I(hkl) and Fc(hkl) if calculated from f_j , x_j , y_j , z_j . Note that (hkl) represent lattice planes and hkl reflections.

- \rightarrow The intensitis I_{hkl} of the reflections (i.e. of the reciprocal lattice points) thus reflect the atomic arrangement of the real crystal structure.
- \rightarrow Each intensity I(hkl) or I_{hkl} is proportional to the the square of a quantity called structure factor F(hkl) or F_{hkl} (Fo for observed, Fc for calculated).
- \rightarrow The structure factor F(hkl) is a complex number in general but becomes real in case of crystal structures with a centre of symmetry:

$$F(hkl) = F_{hkl} = \sum_{j} f_{j} \cos 2\pi (hx_{j} + ky_{j} + lz_{j})$$

 \rightarrow In case of centrosymmetric crystal structures, the phases are 0 or π , i.e. "only" the signs instead of the phases of the structure factors have to be determined.

The problem is that the phases/signs are lost upon measurement of the intensities of the reflections (phase problem of crystal structure analysis/determination)

Structure determination only indirectly possible!

1. Fixing und centering of a crystal on a diffractometer and determination of the orientaion matrix M and the lattice constants a, b, c, α , β , γ of the crystal from the Eulerian angles of the reflections (θ , ω , φ , χ) and of the cell content number Z (aus cell volume, density and formula),

Principle of a four-circle diffraktometer for single crystal stucture determination by use of X-ray or neutron diffraction

CAD4 (Kappa-Axis-Diffraktometer)

X-ray analysis with single crystals: Reciprocal lattice (calculated from an IPDS measurement)

- 2. Determination of the space group (from symmetry and systematic extinctions of the reflections)
- 3. Measuring of the intensities I(hkl) of the reflections (asymmetric part of the reciprocal lattice up to $0.5 \le \sin\theta/\lambda \le 1.1$ is sufficient)
- 4. Calculation of the structure amplitudes $|Fo_{hkl}|$ from the I_{hkl} incl. absorption, extinktion, LP correction \rightarrow data reduction
- 5. Determination of the scale factor K and of the mean temperature parameter B for the compound under investigation from the mean $|Fo_{hkl}|$ values for different small θ ranges θ_m according to $\ln(|Fo|^2/\Sigma f_i^2) = \ln(1/K) - 2B(\sin^2\theta_m)/\lambda^2 \rightarrow data skaling$

- 6a. Determin. of the phases α_{hkl} of the structure amplitudes $|Fo_{hkl}| \rightarrow$ phase determination (phase problem of structure analysis)
 - trial and error (model, than proff of the scattering pattern)
 - calculation of the Patterson function

 $P_{(uvw)} = (1/V) \cdot \Sigma |F_{hkl}|^2 \cos 2\pi (hu + kv + lw)$

from the structure amplitudes resulting in distance vectors between all atoms of the unit cell

Points to the distribution and position of ,,heavy atoms" in the unit cell \rightarrow heavy atom method

6b. Determin. of the phases α_{hkl} of the structure amplitudes $|Fo_{hkl}|$

• direct methodes for phase determination phases α_{hkl} and intensity distribution are not indipendant from each other \rightarrow allowes determination of the phases $\alpha_{hk}l$

e.g. $F(hkl) \sim \Sigma\Sigma\Sigma F(h'k'l') \cdot F(h-h',k-k',l-l')$ (Sayre, 1952)

oder S(F_{hkl}) ~ S(F_{h'k'l'})·S(F_{h-h',k-k',l-l'}) (S = sign of F)

direct methodes today are the most important methodes for the solving the phase problem of structur analysis/determination

• anomalous dispersion methodes use the phase and intensity differences in the scattering near and far from absorption edges (measuring with X-rays of different wave lengths necessary)

7. Calculation of the electron density distribution function

 $\delta(xyz) = (1/V) \cdot \Sigma |Fo_{hkl}| \cdot exp(i\alpha_{hkl} \cdot exp(-2\pi i(hx+ky+lz))) of the$

unit cell from the structure amplitudes $|Fo_{hkl}|$ and the phases α_{hkl} of the reflections hkl (using B and K) \rightarrow Fourier synthesis

Platin-Phthalocyanin, $PtC_{32}H_{16}N_8$: Elektronendichteprojektion $\rho(xz)$.

and determination of the elements and the atom sites x_j , y_j , $z_{j^{22}}$

 Calculation of the structure factors Fc_{hkl} (c: calculated) by use of these atomic sites/coordinates x_j, y_j, z_j and the atomic form factors (atomic scattering factors) f_i according to

 $Fc_{hkl} = \Sigma f_j \cdot exp(2\pi i(hx_j + ky_j + lz_j))$

9. Refinement of the scale factor K, the temperature parameter B (or of the individuel B_j of the atoms j of the unit cell) and of the atomic coordinates x_j,y_j,z_j by use of the least squares method, LSQ via minimising the function

 $(\Delta F)^2 = (|F_0| - |F_c|)^2$ for all measured reflections hkl

agreement factor: $R = \Sigma |(|F_o| - |F_c|)| / \Sigma |F_o|$

10. Calculation of the bond lengths and angles etc. and graphical visualisation of the structure (structure plot)

Crystallographic and structure refinement data of Cs₂Co(HSeO₃)₄·2H₂O

Name	Figure	Name	Figure
Formula	Cs ₂ Co(HSeO ₃) ₄ ·2H ₂ O	Diffractometer	IPDS (Stoe)
Temperature	293(2) K	Range for data collection	3.1° ≤Θ≤ 30.4 °
Formula weight	872.60 g/mol	hkl ranges	$-10 \le h \le 10$
Crystal system	Monoclinic		$-17 \le k \le 18$
Space group	$P 2_1/c$		$-10 \le l \le 9$
Unit cell dimensions	a = 757.70(20) pm	Absorption coefficient	$\mu = 15.067 \text{ mm}^{-1}$
	<i>b</i> = 1438.80(30) pm	No. of measured reflections	9177
	c = 729.40(10) pm	No. of unique reflections	2190
	$\beta = 100.660(30)^{\circ}$	No. of reflections $(I_0 \ge 2\sigma(I))$	1925
Volume	$781.45(45) \times 10^6 \text{ pm}^3$	Extinction coefficient	$\varepsilon = 0.0064$
Formula units per unit cell	Z = 2	Δho_{min} / Δho_{max} / e/pm ³ × 10 ⁻⁶	-2.128 / 1.424
Density (calculated)	3.71 g/cm ³	$R_1 / wR_2 (I_0 \ge 2\sigma (I))$	0.034 / 0.081
Structure solution	SHELXS – 97	R_1 / wR_2 (all data)	0.039 / 0.083
Structure refinement	SHELXL – 97	Goodness-of-fit on F^2	1.045
Refinement method	Full matrix LSQ on F^2		

Positional and isotropic atomic displacement parameters of Cs₂Co(HSeO₃)₄·2H2O

Atom	WP	X	У	Z	U _{eq} /pm ²
Cs	4e	0.50028(3)	0.84864(2)	0.09093(4)	0.02950(11)
Со	2a	0.0000	1.0000	0.0000	0.01615(16)
Se1	4e	0.74422(5)	0.57877(3)	0.12509(5)	0.01947(12)
011	4e	0.7585(4)	0.5043(3)	0.3029(4)	0.0278(7)
012	4e	0.6986(4)	0.5119(3)	-0.0656(4)	0.0291(7)
013	4e	0.5291(4)	0.6280(3)	0.1211(5)	0.0346(8)
H11	4e	0.460(9)	0.583(5)	0.085(9)	0.041
Se2	4e	0.04243(5)	0.67039(3)	-0.18486(5)	0.01892(12)
021	4e	-0.0624(4)	0.6300(2)	-0.3942(4)	0.0229(6)
022	4e	0.1834(4)	0.7494(3)	-0.2357(5)	0.0317(7)
023	4e	-0.1440(4)	0.7389(2)	-0.1484(4)	0.0247(6)
H21	4e	-0.120(8)	0.772(5)	-0.062(9)	0.038
OW	4e	-0.1395(5)	1.0685(3)	0.1848(5)	0.0270(7)
HW1	<i>4e</i>	-0.147(8)	1.131(5)	0.032	0.032
HW2	4e	-0.159(9)	1.045(5)	0.247(9)	0.032

Anisotropic thermal displacement parameters $Uij \times 104 / pm2$ of $Cs_2Co(HSeO_3)_4 \cdot 2H_2O$

Atom	U ₁₁	U ₂₂	U ₃₃	U ₁₂	U ₁₃	U ₂₃
Cs	0.0205(2)	0.0371(2)	0.0304(2)	0.00328(9)	0.0033(1)	-0.00052(1)
Со	0.0149(3)	0.0211(4)	0.0130(3)	0.0006(2)	0.0041(2)	0.0006(2)
Se1	0.0159(2)	0.0251(3)	0.01751(2)	-0.00089(1)	0.00345(1)	0.00097(1)
011	0.0207(1)	0.043(2)	0.0181(1)	-0.0068(1)	-0.0013(1)	0.0085(1)
012	0.0264(2)	0.043(2)	0.0198(1)	-0.0009(1)	0.0089(1)	-0.0094(1)
013	0.0219(1)	0.034(2)	0.048(2)	0.0053(1)	0.0080(1)	-0.009(2)
Se2	0.0179(2)	0.0232(2)	0.0160(2)	0.00109(1)	0.00393(1)	-0.0001(1)
O21	0.0283(1)	0.024(2)	0.0161(1)	0.0008(1)	0.0036(1)	-0.0042(1)
O22	0.0225(1)	0.032(2)	0.044(2)	-0.0058(1)	0.0147(1)	-0.0055(1)
023	0.0206(1)	0.030(2)	0.0240(1)	0.0018(1)	0.0055(1)	-0.0076(1)
OW	0.0336(2)	0.028(2)	0.0260(2)	0.0009(1)	0.0210(1)	-0.0006(1)

The anisotropic displacement factor is defined as: exp $\{-2p2[U11(ha^*)2 + ... + 2U12hka^*b^*]\}$

Some selected bond lengths (/pm) and angles(/°) of $Cs_2Co(HSeO_3)_4 \cdot 2H_2O$

CsO ₉ polyhedron			
Cs-O11	316.6(3)	O22-Cs-OW	78.76(8)
Cs-O13	318.7(4)	O22-Cs-O12	103.40(9)
Cs-O22	323.7(3)	O23-Cs-O11	94.80(7)
Cs-O23	325.1(3)	O13-Cs-O11	42.81(8)
Cs-OW	330.2(4)	O11-Cs-O23	127.96(8)
Cs-O21	331.0(3)	O13-Cs-O22	65.50(9)
Cs-O12	334.2(4)	O22-Cs-O22	66.96(5)
Cs-O22	337.1(4)	O11-Cs-OW	54.05(8)
Cs-O13	349.0(4)	O23-Cs-O22	130.85(9)
CoO ₆ octahedron			
Co-OW	210.5(3)	OW-Co-OW	180
Co-O11	210.8(3)	OW-Co-O21	90.45(13)
Co-O21	211.0(3)	OW-Co-O11	89.55(13)

SeO ₃ ²⁻ anions					
Se1-O11	167.1(3)		O12- Se1-O11	104.49(18)	
Se1-O12	167.4(3)		O12- Se1-O13	101.34(18)	
Se1-O13	177.2(3)		O11- Se1-O13	99.66(17)	
Se2-O21	168.9(3)		O22- Se2-O21	104.46(17)	
Se2-O22	164.8(3)		O22- Se2-O23	102.51(17)	
Se2-O23	178.3(3)		O21- Se2-O23	94.14(15)	
Hydrogen bonds		d(O-H)	d(O…H)	d(O…O)	<0H0>
O13-H11.	·O12	85(7)	180(7)	263.3(5)	166(6)
O23-H21O21		78(6)	187(7)	263.7 (4)	168(7)
OW-HW1···O22		91(7)	177(7)	267.7 (5)	174(6)
OW-HW2 […] O12		61(6)	206(6)	264.3 (4)	161(8)

Symmetry codes:

- 1.-x, -y+2, -z2.-x+1, -y+2, -z3.-x+1, y-1/2, -z+1/24.x-1, -y+3/2, z-1/25.x, -y+3/2, z-1/26.x, -y+3/2, z+1/27.-x, y-1/2, -z-1/28.-x+1, y+1/2, -z+1/29.x+1, -y+3/2, z+1/210.-x, y+1/2, -z-1/211.-x+1, -y+1, -z12.x-1, -y+3/2, z+1/2

Connectivity of the coordination polyhedra of Cs₂Co(HSeO₃)₄·2H₂O

Hydrogen bonds of Cs₂Co(HSeO₃)₄·2H₂O

Anions and hydrogen bonds of $Cs_2Co(HSeO_3)_4$ ·2H₂O

Crystal structure of Cs₂Co(HSeO₃)₄·2H₂O

Course of a crystal structure analysis

Literature

•*Röntgenfeinstrukturanalyse* von **H. Krischner**, Vieweg (Allgemeine Einführung, Schwerpunkt Pulvermethoden) oder alternativ

•*Röntgen-Pulverdiffraktometrie* von **Rudolf Allmann**, Clausthaler Tektonische Hefte 29, Sven von Loga, 1994

•Kristallstrukturbestimmung von W. Massa, Teubner, Stuttgart, 1984

•Untersuchungsmethoden in der Chemie von H. Naumer und W. Heller, Wiley-VCH

(Einführung in die moderne Analytik und Strukturbestimmungsmethoden)

•*X-Ray Structure Determination* von **G. H. Stout, L.H. Jensen,** MacMillan, London

(Einführung in die Kristallstrukturanalyse für Fortgeschrittene)