Advanced Inorganic Chemistry part Inorganic Molecules

Exercises 1 to 22 (electronic and molecular structures, building reactions, and chemical and physical properties, and symmetry of inorganic molecules and molecular ions and of main group IV, V, and VI elements, hydrogen bonding, packing of molecules, structure determination methods)

Exercise 1

For 3 of the molecules and ions listed below, give the oxidation numbers of the non-ligand atoms, draw a suitable Lewis structure with the formal charges (if necessary) by using lines for bonds and free electron pairs and dots for single electrons, the ψ -type AL_mE_n (m = number of ligands, n = number of free electron pairs or single electrons) the resulting ψ -polyhedron, the gas phase structure/shape and the symmetry of the molecule (in form of a draw or description), and mark those with a star which have no resonance structures (no other electronic structure).

Give the result in form of a table as given below.

Formula	Ox. no.	Lewis struct.	ψ-type	ψ-polyhedron	Mol. struct.	Sym.
NF ₃	3+	draw it	AL ₃ E	tetrahedron	trig. pyr.	C _{3v}

Exercise 2

For the same molecules and ions treated in Exercise 1, give the formula, the names, a suitable building reaction, the reactivity, the color, the state of matter under normal conditions (if possible), and the magnetic properties (d for dia- and p for paramagnetic).

As far as possible, give the result in form of a table.

No	Name				No	Name			
1	Quimeng	AsX ₃	N_2	SeX ₂	18	Bontu	ClF ₅	SO ₂	TeX ₂
2	Jia	AsX_4^+	N ₂ O	SeX ₄	19	??? Murthay	CO_2	OX ₂	S_2
3	Suriev	BeCl ₂	$N_2O_2^{2-}$	SF_4	20	Klein	CO_{3}^{2}	$P_2O_6^{4-}$	S_2Cl_2
4	Lu	$\operatorname{BeX_4^{2-}}$	N_2O_3	SF ₆	21	Baskara	CX ₄	$P_2O_7^{4-}$	S_2F_{10}
5	Jiang	BrF ₃	N_2O_4	SiF ₆ ²⁻	22	Hameed	GaI ₃	P_2Se_5	S_2F_2
6	Li	BrF_4	N_2O_5	SiX ₄	23	Kothapally	GeX ₄	$P_4(NR)_6$	$S_2O_3^{2-}$
7	Zhang	BrF ₅	NO	SnCl ₂	24	Kölsch	$H_2PO_2^-$	P_4O_{10}	$S_2O_4^{2-}$
8	Tran	BX ₃	NO^+	ZnX_2	25	Krämer	HgX ₂	P_4O_6	$S_2O_6^{2-}$
9	Khairalla	BX_4	NO ₂	SO_3	26	Jasper	HPO_3^{2-}	P_4S_6	SbCl ₅
10	Fazuldjanova	$[(CH_3)_2PN]_3$	NO_2^-	SO_{3}^{2}	27	Lai	I_2Cl_6	PCl ₃ F ₂	SbF ₅
11	Pithan	[(CH ₃) ₂ SiO] ₃	NO_2^+	SO_4^{2-}	28	Lucke	I_3^-	PCl ₅	SbX ₃
12	Steinhoff	$[Cl_2PN]_3$	NO ₃ ⁻	SX_2	29	Nischal	ICl ₂ ⁻	PCl ₆	XeF ₃ ⁺
13	Steinbrück	$[Cl_2PN]_4$	NX ₃	Te(OH) ₆	30	Salah Uddin	ICl_4^-	PF ₅	XeF ₄
14	Schmidt	CdX_2	NX_4^+	TeF ₄	31	Stephan	IF ₅	PF_6^-	Se ₂ F ₁₀
15	Höfer	ClF ₃	OH_3^+	TeF ₆	32	Cleiton	IF ₇	PO_{4}^{3-}	XeF ₅ ⁺
16	v. Gradowski	SCl ₄	SeF ₄	XeF ₂	33	Roesener	TeF ₇	PX ₃	XeF ₆
17	Staudt	SCl ₂	SeF ₆	XeO_4	34		BrCl ₃	NO ₃ ⁻	XeO ₃

Molecules/ions to be treated in exercises 1 and 2.

* X = F, Cl, Br, and/or I

Every student has to treat the 3 molecules/ions given in the table (going down from No 1 to No 34).

For help, information, and further exercises, refer to the given textbook(s) of inorganic chemistry and to our corresponding website (<u>http://anorganik.chemie.uni-siegen.de</u>, then "Advanced Inorg. Chem." and "Inorganic Molecules").

Exercise 3

Please explain why P₄O₆, and P₄O₁₀ are built instead of P₂O₃ and P₂O₅, respectively.

Exercise 4

Please sketch suitable Lewis formula of potential non-cyclic and cyclic P_4S_6 (no exo S atoms).

Exercise 5

 $(Cl_2PN)_3$ was found to have symmetry D_{3h} . Sketch a Lewis formula and explain why it is not aromatic.

Exercise 6

Name and describe structurally two forms each of the elements C, P, and S.

Exercise 7

Name and describe structurally the allotropic forms of the main group IV elements.

Exercise 8

Name and describe structurally the allotropic forms of the main group V elements.

Exercise 9

Name and describe structurally the allotropic forms of the main group VI elements.

Exercise 10

Name and describe structurally the thermodynamically stable forms of the elements C, P, and S.

Exercise 11

Name the number of covalent bonds, the elements N, P, S, and Cl can build, and explain why the compounds or ions SiF_6^{2-} , PF_5 , SF_6 do exist and CF_6^{2-} , NF_5 , OF_6 do not.

Exercise 12

Sketch the Lewis structures of N_2 , NH_3 , and S_2 and explain why these molecules do not have different resonance structures.

Exercise 13

Sketch the Lewis structures and the expected and found molecular structures and give the names and the symmetry groups (Schönflies or Hermann/Mauguin) of "P₂O₃". "P₂O₅", P₄S₆, and P₂Se₅.

Exercise 14

Sketch and explain the VB wavefunctions and MO's of N₂ and HF.

Exercise 15

Give a short definition of a hydrogen bond and name and explain the factors affecting the strength of a hydrogen bond.

Exercise 16

Name the factors affecting the acceptor capability of a hydrogen-bond acceptor and order the given anions according to their relative acceptor capability (staring with the weakest and ending with the strongest): Br⁻, ClO_4^- , F^- , SO_3^{2-} , SO_4^{2-} , H_2O , H_3O^+ , $HSeO_3^-$, and OH^- .

Exercise 17

Assign the hydrogen bond enthalpies of 7, 22, and 55 kJ/mol to the hydrogen bonds HO-H··OH₂, HO-H··Cl⁻, and HS-H··SH₂, respectively.

Exercise 18

Give the ranges of energies and wavelengths of X-ray, UV/Vis, and IR radiation. Name and describe the structure determination methods based on these radiations and explain the respective physical processes.

Exercise 19

Sketch the principle parts of an IR spectrometer and a X-ray diffraction device and describe the main differences between IR spectroscopy and X-ray diffraction concerning the principle processes, selection rules, changes of energy etc., and their meaning for the structure determination of inorganic molecules.

Exercise 20

Sketch the principle parts of an IR and a Raman spectrometer and describe the main differences between IR and Raman spectroscopy concerning the principle processes, selection rules, and their meaning for the structure determination of inorganic molecules.

Exercise 21

Name and describe/scetch two common structure determination methods based on different types of electromagnetic radiation with their ranges of energies and wavelengths each and the respective physical processes.

Exercise 22

Name and specify the factors and forces affecting the crystal structures of molecular solids.

For help, information, and further exercise, refer to the given textbook(s) of inorganic chemistry and our corresponding website (<u>http://anorganik.chemie.uni-siegen.de</u>).