## **4.1 Rules for constructing MOs**

- 1) Draw AO energy level schemes on the left and right side
- 2) Construct the MO energy level scheme in the middle
- 3) The atomic core levels are similar in the molecule
- 4) Valence AOs, overlapping, of similar energy, of same symmetry, combine to yield shifted MO levels (in N<sub>2</sub> etc. 1s are core AOs!)
- 5) n AOs yield n MOs (the highest valence MO is sometimes missing !)
- 6) The lowest MO is below the lowest AO, the highest MO is even more above the highest AO (nonsymmetric splitting !)
- 7) s &  $p\sigma$  AOs on the left overlap with those on the right (s-p hybrids);  $p\pi$  AOs on the left overlap with those on the right, forming  $p\pi$  MOs
- 8) The MO shifts are the larger the larger the overlap and the more similar the AO energies; s-p mixing-promotion for C (B,N; little:Be,O)



Example:  $2H \rightarrow H_2$ 

The lowered MO is bonding, the strongly raised MO is antibonding Here 1  $\sigma$  bond, symbol: H – H

## **4.2 Homonuclear Diatomics**



**Examples** "2 He"  $1\sigma^2 1\sigma^{*2}$ Li-Li  $1\sigma^2$ Be Be  $1\sigma^2 1\sigma^{*2}$  $|B^{-}B| 1\sigma^2 1\sigma^{*2} 1\pi^2$  $|C_C| 1\sigma^2 1\sigma^{*2} 1\pi^4$  $|N\equiv N|1\sigma^21\sigma^{*2}1\pi^42\sigma^2$ O-O  $2\sigma^2 1\pi^4 1\pi^{*2}$ **F**-**F**  $2\sigma^2 1\pi^4 1\pi^{*4}$ "Ne~Ne" Note: The two lower  $\sigma$  from 2s are shifted down by 2p-mixing

## 4.3 Notes

He<sub>2</sub> 2 LP; Li<sub>2</sub> 1σ (weak:1e-½σ bond stronger than 2e-1σ bond); Be<sub>2</sub> secondary bond of 2 LP; B<sub>2</sub> two ½π with parallel spins, 2 LP; C<sub>2</sub> 2 π, 2 LP (at similar energy 1½π+½σ); N<sub>2</sub> 2π 1σ 2LP; O<sub>2</sub> 1π 1σ 4LP; F<sub>2</sub> 1σ 6LP; Ne<sub>2</sub> van der Waals attraction of 4+4 LP

- $\sigma^2 \sigma^{*2}$ : 1 deloc. bonding & 1 deloc. antibonding MO is equivalent to 2 localized nonbonding (one-center lone pair = LP) MOs; secondary bond for Be<sub>2</sub>(s-p hybr.); none for He<sub>2</sub>
- $\pi^2$ : 1 electron each in a real  $\pi_x$  and  $\pi_y$ , or equivalently in a complex  $\pi_{+1}$  and  $\pi_{-1}$  orbital density is cylindrical, 0 angular momentum, two  $\frac{1}{2}\pi$  bonds
- $\pi^4 \pi^{*2}$ : 2  $\pi$  bonds, two  $\frac{1}{2}\pi^*$  antibonds is equivalent to 1  $\pi$  bond and 2  $\pi$  lone pairs

s-p hybridization: SH<sub>2</sub> has two polar Sp/Hs bonds and 2s-LP, 2p-LP (=two 2sp-LPs =one cloud, not 2 'ears'): S<sup> $\delta$ -</sup> 2s<sup>2</sup>2p<sup>4.4</sup> 2H<sup> $\delta$ +</sup> 1s<sup>0.8</sup> s-p promotion: CH<sub>4</sub> has 4 nonpolar C s<sup>.3</sup>p<sup>.7</sup> H s<sup>1</sup> bonds: C s<sup>1.2</sup>p<sup>2.8</sup>, C has 0.8 s→p, because 2s and 2p overlap similarly with H1s

## **4.4 Heteronuclear and Polyatomic Molecules**



The 3+1 delocalized canonical symmetry-adapted MOs of  $CH_4$  can be linear-combined to yield 4 localized equivalent  $C(s^{1.2}p^3)+H(s)$  MOs; in contrast to the VB assumption, the MO-SCF optimization gives a little more C2s 'population', since C2s is lower in energy than C2p and H1s. In the case of XeF<sub>2</sub> the 3 AOs Xe5p $\sigma$  and left and right F2p $\sigma$  yield 3 canonical  $\sigma$ -MOs, 1 bonding, 1 nonbonding, 1 antibonding. They can be transformed into a Xe-LP and two polar F $\rightarrow$ Xe bonds:  $F^{\delta} \rightarrow Xe^{2\delta^+} \leftarrow F^{\delta^-}$ . Compare Atkins, PC<sup>2</sup> §14 (orbitals are neither slim nor touching spheres! tails are bigger! 1s $\sigma$ -MO at r = 0 is smaller, etc.! But a few Figs. are correct)