Symmetry of Molecules and Point Groups

What does symmetry mean?

Symmetry (Greek = harmony, regularity) means the repetition of a motif and thus the agreement of parts of an ensemble (Fig. 1).

Fig. 1 Examples of symmetric objects
Symmetry can also mean harmony of proportions, or stability, order, and beauty.

Definition:

An object is symmetric if it is left invariant by a transformation, i.e., cannot be distinguished before and after transformation.

Symmetry transformations, operations, elements are:

Symbol*		Symmetry operation
Sch	HM	* Notation of symmetry elements after Schönflies (Sch for moleculs) and International Notation after Hermann/Mauguin (HM for crystals)
E	(1)	identity (E from "Einheit" = unity, an object is left unchanged)
C_{n}	(n)	properrotation through an angle of $2 \pi / \mathrm{n} \mathrm{rad}$.
S_{n}		improperrotation through an angle of $2 \pi / \mathrm{n} \mathrm{rad}$. followed by a reflection in a plane perpendicular to the axis (rotation-reflection axis)
	n	improperrotation through an angle of $2 \pi / \mathrm{n}$ rad. followed by a reflection through a point on the axis (rotationinversion axis)
i	$\overline{1}$	inversion (point reflection) $\left(\overline{1} \equiv \mathrm{~S}_{2}\right) \rightarrow$ ($x, y, z \rightarrow-x,-y,-z$ in Cartesian coordinates)
σ	m	mirror plane (from "Spiegel")
σ_{h}		horizontal reflection in a plane passing through the origin and perpendicular to the axis with highest symmetry
σ_{v}		vertical reflection in a plane passing through the origin and the axis with highest symmetry
$\sigma_{\text {d }}$		diagonal reflection in a plane as σ_{v} and bisecting the angle between the two-fold axis perpendicular to the axis of highest symmetry
	t	translation $\mathbf{t}=\mathrm{n}_{1} \cdot \mathbf{a}+\mathrm{n}_{2} \cdot \mathbf{b}+\mathrm{n}_{3} \cdot \mathbf{C}$
		1. column: notation after Schönflies (molecules)
		2. column: notation after Hermann/Mauguin (crystals)

Symmetry classes and combinations \Rightarrow point groups (see Table 1) (in a point group at least one point in space is left invariant by the operation)

Table 1 Point groups of molecules and polyhedra*

Point gr.	Sym elements*	$\mathbf{h}^{* * *}$	Point gr.	Sym elements*	$\mathbf{h}^{* * *}$
C_{1}	E	1	C_{i}	i	2
C_{s}	σ	2	C_{n}	C_{n}	n
S_{n}	S_{n}	n	C_{nv}	$\mathrm{C}_{\mathrm{n}}, \mathrm{n} \sigma_{\mathrm{v}}$	2 n
C_{nh}	$\mathrm{C}_{\mathrm{n}}, \sigma_{\mathrm{h}}$	2 n	D_{n}	$\mathrm{C}_{\mathrm{n}}, n \mathrm{n}_{2} \perp \mathrm{C}_{\mathrm{n}}$	
D_{nd}	$\mathrm{C}_{\mathrm{n}}, \mathrm{C}_{2} \perp \mathrm{C}_{\mathrm{n}}, \mathrm{n} \sigma_{\mathrm{d}}$	4 n	D_{nh}	$\mathrm{C}_{\mathrm{n}}, \mathrm{nC}_{2} \perp \mathrm{C}_{n}, \sigma_{\mathrm{h}}, n \sigma_{\mathrm{v}}$	4 n
$\mathrm{C}_{\infty \mathrm{ov}}$	linear no i	∞	$\mathrm{D}_{\infty \mathrm{h}}$	linear with i	∞
T	tetrahedral	12	O	oktahedral	24
$\mathrm{~T}_{\mathrm{d}}$		24	O_{h}	(cubic)	48
$\mathrm{~T}_{\mathrm{h}}$		24			
I	ikosahedral	60	$\mathrm{~K}_{\mathrm{h}}$	spherical	∞
I_{h}		120			

* Schoenflies notation, ${ }^{* *}$ Important symmetry elements, *** Order h (number of repetitions)

The point groups of some inorganic and organic compounds and the schematic representation of the symmetries of some important objects and polyhedra with their orders (repetitions) $n=2,3,4,5,6$ and ∞ are shown in Figs. 2a und 2b.

$\mathrm{C}_{4 \mathrm{v}}$

$\mathrm{C}_{2 h}$

$\mathrm{D}_{5 \mathrm{~h}}$

$\mathrm{D}_{5 d}$

chiral!

$\mathrm{C}_{60} \mathrm{I}_{\mathrm{h}}$

Abb. 2a Point groups of some inorganic and organic molecules

Figure 12-8
Atkins Physical Chemistry, Eighth Edition
© 2006 Peter Atkins and Julio de Paula
Fig. 2b Schematic representation of some figures and polyhedra with their symmetry properties, orders n and point groups

The point group notation after Hermann-Mauguin is given in the part Crystal Symmetry and Space Groups.

As exercise (find, note and systematize), the symmetry elements and point groups of some molecules (without electron pairs) are listed in Fig. 3.
A symmetry flow chart is given in Fig. 4.

Fig. 3 Point groups and symmetry elements of some molecules

Fig. 4 Symmetry flow chart for the determination of point groups

Representation/demonstration of symmetry properties

To demonstrate the symmetry properties of three-dimensional (spatial) objects (e.g. molecules, optional figures or frames, polyhedra, crystals) in a plane, projections like e.g. the stereographic projection are used (Fig. 5).

Fig. 5 Principle of a stereographic projection
The treated object, polyhedron, crystal etc. is positioned at the center of a sphere so that his main symmetry axis (axis of highest symmetry) is oriented perpendicularly to the equatorial plane. Its surface normals or center beams will meet the surface of the sphere at the so called point or plane pole P. The connecting line of the point or plane pole P with the opposite sphere pole (north or south pole) will meet the equatorial (projection) plane at the projection point P^{\prime} of the point or plane pole P.
The angle between two point or plane poles corresponds to the angle between two center beams or the normal angles of two of the figure or crystal faces (normal angle $=180^{\circ}-$ plane angel), respectively, and gives the equatorial angle (azimuth β) and the vertical angle (90° - pole altitude α).
I.e., the stereographic projection is isogonal (s. Fig. 6 und 7).

Fig. 6 Stereographic projection of a tetragonal prism (a) and tetragonal pyramid (b). The angle coordinates $\varphi=\beta$ and $\delta=\alpha$ of the planes of the pyramid are also given.

Fig. 7 Plane poles and stereographic projection of a galenite crystal
The plane poles of a crystal mostly are positioned on few great circles. The corresponding planes belong to so called crystal zones. The zone axis is oriented perpendicularly to the plane of the respective great circle.
With the help of stereographic projections one can show/demonstrate, point or plane poles, plane angles, and thus the symmetry properties of molecules, polyhedra, or crystals.

