X-RAY DIFFRACTION (XRD)

and
XRAY POWDER DIFFRACTION (XRPD)
Structure Determination by use of X-Rays
Determination of sites/positions of atoms
Crystal or X-Ray Structure Determination
Finger print, Identification of Substances
Phase Analysis, Phase Transition Investigation

Production of X-rays by X-ray tubes

Production of X-rays by X-ray tubes

X-ray tube
Anode of e.g. $\mathrm{Cr}, \mathrm{Cu}, \mathrm{Mo}$)

: Schaltschema eines Röntgengenerators (nach Jost, 1975).

Pount focus

X-ray tube
Scheme, Anode, Focus

White/Slow and Emission Spectra of X-rays

$\lambda_{\text {Min }}[\AA]=12.4 / \mathrm{V}[\mathrm{kV}], \lambda_{\text {Max }} \approx 1.5 \cdot \lambda_{\text {Min }}$

White and emission spectra (Mo)

$$
\nu_{\mathrm{K} \alpha} \sim \mathrm{Z}^{2}(\text { Henry Moseley, } 1913)
$$

Emission Spectrum of a X-ray Tube

Slow and emission spectra
$v_{\mathrm{Ka}} \sim \mathrm{Z}^{2}$ (Henry Moseley, 1913)
$\lambda_{\text {Min }}[\AA]=12.4 / \mathrm{V}[\mathrm{kV}], \lambda_{\text {Max }} \approx 1.5 \cdot \lambda_{\text {Min }}$
$\log E$

K Seria

Term scheme (Auswahlregeln: $2 \mathrm{n}-1$ states, $1 \leq \mathrm{n} \leq 7,0 \leq 1 \leq \mathrm{n}-1, \Delta \mathrm{l}= \pm 1,-1 \leq \mathrm{m}_{1} \leq+1, \Delta \mathrm{~m}_{1}=0, \pm 1$

Wavelengths of different X-ray tubes

Wavelengths of the most important K series in \AA *

Atom Nr.	Element	$\mathrm{K} \alpha$	$\mathrm{K} \alpha_{1}$	$\mathrm{~K} \alpha_{2}$	$\mathrm{~K} \beta$
24	Chrom	2,29092	2,28962	2,29351	2,08480
26	Eisen	1,93728	1,93597	1,93991	1,75653
27	Kobalt	1,79021	1,78892	1,79278	1,62075
28	Nickel	1,65912	1,65784	1,66169	1,50010
29	Kupfer	1,54178	1,54051	1,54433	1,39217
42	Molybdän	0,71069	0,70926	0.71354	0.63225
47	Silber	0,56083	0,55936	0,56378	0,49701
74	Wolfram	0,21060	0,20899	0,21381	0,18436

* $1 \AA=10^{-10} \mathrm{~m}$. In former times wavelengths were given in X units:
$1000 \mathrm{X}=1 \mathrm{KX}=1,00202 \AA=100,202 \mathrm{pm}$.

Radiation Protection and Units for Use of X-Ray's

Activity: Ion dosis	Becquerel (Bq) (C/kg):	$1 \mathrm{~Bq}=1 / \mathrm{s}$	before Curie (Ci): $1 \mathrm{Ci}=3,7 \times 10^{10} \mathrm{~Bq}$ before Röntgen (R): $1 \mathrm{R}=2,6 \times 10^{-4} \mathrm{C} / \mathrm{kg}$)
Energy dosis:	Gray (Gy)	$1 \mathrm{~Gy}=1 \mathrm{~J} / \mathrm{kg}$	before $\operatorname{Rad}(\mathrm{rd}): 1 \mathrm{rd}=0,01 \mathrm{~Gy}$
Eqivalent dosis:	Sievert (Sv)	$1 \mathrm{~Sv}=1 \mathrm{~J} / \mathrm{kg}$	before Rem (rem): $1 \mathrm{rem}=0,01 \mathrm{~Sv}$
- Activity:	1 Ci is the decay rate of $1 \mathrm{~g}{ }^{226} \mathrm{Ra}$ (historically to the honor of Marie Curie).		
- Iondosis:	physically, referred to the building of ions in air.		
- Energy dosis:	absorbed radiation energy per mass unit.		
- Eqivalent dosis	: measure for destruction ability of a radiaton (impact factor • energy dosis).		
Impact factor:	1 for X-rays,	to 20 for α	

- Natural radiation exposure: $\sim 2,5 \mathrm{mSv} / \mathrm{a}$ (cosmisc $\sim 1 \mathrm{mSv}$, terrestric $\sim 1 \mathrm{mSv}$, other $\sim 0,5 \mathrm{mSv}$), ${ }^{40} \mathrm{~K}$ corporated in a human body gives e.g. $\sim 4500 \mathrm{~Bq}(\sim 0,18 \mathrm{mSv} / \mathrm{a})$.
- Medical radiation exposure: $\sim 1,5 \mathrm{mSv} / \mathrm{a}$ (e.g. stomach-bowel investigations $\sim 160 \mathrm{mSv}$).
- Other radiation exposures (technique, atomic bombes, nuclear reactors etc.): $\sim 0.01-0.03 \mathrm{mSv} / \mathrm{a}$.
- 20 mSv have been fixed to be the maximum body dosis per year for exposed persons.
- 400 mSv per year are considered to be just not harmful. From 2-10 Sv serious health damages appeare. Doses of $10-15 \mathrm{~Sv}$ are lethal by $90-100 \%$, doses $>50 \mathrm{~Sv}$ are lethal by 100% within 1 h to 2 days.

\longrightarrow Use of ionizing radiation needs attention and shielding

Literature: Hans Kiefer, Winfried Koelzer: Strahlen und Strahlenschutz, Springer-Verlag
Internet: www.bfs.de (Bundesamt für Strahlenschutz)

Radiation Protection Needs Shielding

X-ray tube

X-ray tube with shielding

X-Ray Detectors

Classical detector: Geiger-Müller Counter

X-Ray Detectors

Scintillation counter

Modern detector: Szintillation counter

X-Ray Detectors

Modern site-sensitive Detector
One or two dimensional detection of angle or direction of X-rays are diffracted to

- Spectrum: Absorption edges

Absorption of X-Rays

- Reduction by absorber

$$
I=I_{0} \cdot e^{-\alpha d}
$$

- Absorptionskoeffizient α
- Halbwertsdicke

$$
d_{1}=\alpha^{-1} \cdot \ln (2)
$$

Absorption of X-rays

Filtering effects of a Ni-Foil for $\mathrm{Cu}-\mathrm{K}_{\alpha}$ radiation (monochromating) ${ }^{12}$

Scattering/Diffraction of X-rays

If a substance is irradiated by electromagnetic Radiation or neutrons of suitable wavelengths, a small part of the primary radiation $\left(\sim 10^{-6}\right)$ is scattered by the electrons or nuclei of the atoms or ions or molecules of the sample elastically $(\Delta \mathrm{E}=0)$ and coherently ($\Delta \varphi=$ konstant $)$ in all directions. The resulting scattering/diffraction pattern \mathbf{R} is the Fourier transform of the electron/scattering distribution function $\boldsymbol{\rho}$ of the sample and vice versa.

The shape of the resulting scattering/diffraction pattern depends on the degree of order of the sample.

A. X-ray Scattering Diagram of an Amorphous Sample

no long-range order, no short range order
$\mathrm{I}(\theta)$
(monoatomic gas e.g. He) \Rightarrow monotoneous decrease

$$
\mathrm{I}(\theta)=\mathrm{N} \cdot \mathrm{f}^{2}
$$

$$
\mathrm{f}=\text { scattering length of atoms } \mathrm{N}
$$

\Rightarrow no information

$\mathrm{I}(\theta)$

no long-range, but short range order

B. X-ray Scattering Diagram of a Crystalline Sample

crystals and crystal powders have long-range and short-range order \Rightarrow discontinious scattering diagrams with discrete reflections

crystal powder
orientation statistical, λ fixed
\Rightarrow cones of interference

Debye-Scherrer diagram

single crystal
orientation or λ variable
\Rightarrow dots of interference (reflections)

Atoms in crystals are three-dimensionally ordered

forming lattice plane families (Miller indices hkl, spacings $\mathrm{d}_{\mathrm{hkl}}$)

Diffraction of X-rays (neutrons, electrons!) by a Crystalline Sample

 (Single Crystal or Crystal Powder)X-rays scattered by a crystalline sample are not totally extinct only for those directions, where the scattered rays are ,in phase". $\mathbf{R}(\mathbf{S})$ und $\mathrm{I}(\theta)$ therefore are periodic functions of „Bragg reflections".

Bragg equation: $\mathrm{n} \cdot \lambda=2 \mathrm{~d} \cdot \sin \theta$ or $\lambda=2 \mathrm{~d}_{(\mathrm{hkl})} \cdot \sin \theta_{(\mathrm{hkl})}$

Diffraction of X-rays by crystalline samples

Directions and planes of a regular lattice with Miller indices hkl and spacings $\mathrm{d}_{\mathrm{hkl}}$

Bragg equation:
$\mathrm{n} \lambda=2 \mathrm{~d} \sin \theta$
$\lambda=2 \mathrm{~d}_{(\mathrm{hkl})} \sin \theta_{(\mathrm{hkl})}$

X-ray Diffraction (XRD)

The crystal or crystallite is positioned at the center of a (virtual) sphere of radius $1 / \lambda$ and is hit by a X-ray beam with wave length λ running along a center line of that sphere.

X-ray Diffraction (XRD)

Reciprocal lattice

X-ray Powder Diffraction (XRPD)

(Ewald sphere)

$$
\lambda=2 \mathrm{~d}_{\mathrm{hk} 1} \cdot \sin \theta_{\mathrm{hkl}}
$$

primary beam \mathbf{s}_{0} with $\left|\mathbf{s}_{0}\right|=1 / \lambda$

Theorem of Thales Theorem of Pythagoras

The origin of the reciprocal lattice, combined with the crystal(ite), is shifted along the X-ray beam (primary beam \mathbf{s}_{0}) to the circumference of the sphere (by \mathbf{s}_{0}). Then the Bragg equation is fulfilled, always if the scattering vector $\mathbf{S}=\mathbf{s}-\mathbf{s}_{0}$ is equal to a reciprocal lattice vector $\mathbf{H}_{\mathrm{hkl}}=$ ha*+kb*+lc* , i.e. if $\mathbf{S}=\mathbf{H}$, means, if a reciprocal lattice point matches the Ewald sphere.

(X-ray) Diffraction of a Crystalline Sample

(Single Crystal or Crystal Powder) detector

Fourier transform of the electron density distribution

V : volume of sample $\overrightarrow{\mathrm{r}}$: vector in space R : scattering amplitude

X-ray Powder Diffraction (XRPD)

Superposition (interference) of the Xrays scattered by the electrons of the atoms results in enhancement (a) or extinction (b) of the X-rays.

- X-rays scattered by an atom are described by the atomic scattering or form factor f_{j}.
- X-rays scattered by all atoms of a unit cell of a crystal are described by the structure factor $\mathbf{F}_{\text {hkl }}$.

b) Extinction (out of phase)

Superposition (interference) of X-rays

X-ray Powder Diffraction (XRPD)

Scattering strength $f_{j 0}$ of a non-vibrating single atom (atomic form factor, atomic scattering factor) as a function of $\sin \theta / \lambda$

X-ray Powder Diffraction (XRPD)

Structure factor $\mathbf{F}_{\mathrm{hkl}}$

The scattering power of all atoms of an unit cell of a crystal is characterized by the so called structure factor $\mathbf{F}_{\mathrm{hkl}}$. It is (for $\theta=0$) proportional to the sum of the scattering contributions of all the atoms of the unit cell. $\mathbf{F}_{\text {hkl }}$ is characteristic for every family of lattice planes (hkl) and in general a complex number. In a unit cell with n atoms, the structure factor is:

$$
F_{h k 1}=\sum_{j=1}^{n} f_{j} \exp \left[2 \pi i\left(h x_{j}+k y_{j}+1 z_{j}\right)\right]
$$

$\mathrm{h}, \mathrm{k}, \mathrm{l}$: Miller indices, $\mathrm{x}_{\mathrm{j}}, \mathrm{y}_{\mathrm{j}}, \mathrm{z}_{\mathrm{j}}$: atomic positional coordinates.

Using the Euler equation $\exp (\mathrm{i} \varphi)=\cos \varphi+\mathrm{i} \sin \varphi$, the structure factor becomes:
$\mathbf{F}_{\mathrm{hkl}}=\sum \mathrm{f}_{\mathrm{j}} \cos 2 \pi\left(\mathrm{hx}_{\mathrm{j}}+\mathrm{ky}_{\mathrm{j}}+\mathrm{lz}_{\mathrm{j}}\right)+\mathrm{i} \sum \mathrm{f}_{\mathrm{j}} \sin 2 \pi\left(\mathrm{hx}_{\mathrm{j}}+\mathrm{ky}_{\mathrm{j}}+\mathrm{lz}_{\mathrm{j}}\right)$

Measurable is only the intensity, i.e. the square of the structure amplitude: $\mathbf{I}_{\mathbf{h k l}} \sim \mathbf{F}_{\mathbf{h k l}}{ }^{\mathbf{r}}$ This means that all the phases of the complex numbers $\mathbf{F}_{\mathrm{hkl} 1}$ (or the signs in case of centrosymmetric crystal structures) are lost.
三 „Phase problem of crystal structure analysis/determination"

X-ray Powder Diffraction (XRPD)

Structure factor $\mathbf{F}_{\mathrm{hk} 1}$

If the structure has a center of symmetry (centrosymmetric structure), the structure factor

$$
\mathbf{F}_{\mathrm{hkl}}=\sum \mathrm{f}_{\mathrm{j}} \cos 2 \pi\left(\mathrm{hx}_{\mathrm{j}}+\mathrm{ky}_{\mathrm{j}}+\mathrm{lz}_{\mathrm{j}}\right)+\mathrm{i} \sum \mathrm{f}_{\mathrm{j}} \sin 2 \pi\left(\mathrm{hx}_{\mathrm{j}}+\mathrm{ky}_{\mathrm{j}}+\mathrm{lz}_{\mathrm{j}}\right)
$$

reduces/simplifies by compensation/elimination of the imaginary parts to

$$
\mathbf{F}_{\mathrm{hkl}}=\sum \mathrm{f}_{\mathrm{j}} \cos 2 \pi\left(\mathrm{hx}_{\mathrm{j}}+\mathrm{ky}_{\mathrm{j}}+\mathrm{lz}_{\mathrm{j}}\right)
$$

thus the „phase problem" reduces to a „sign problem".
Structure amplitude $\mathrm{F}_{\mathrm{hkl}}=\left|\mathrm{F}_{\mathrm{hkl}}\right|$ and Scattering intensity $\mathrm{I}_{\mathrm{hkl}}$
The modulus of the structure factor is named scattering or structure amplitude.
The scattering intensity ist proportional to the square of the structure amplitude: $\mathbf{I}_{\mathbf{h k l}} \sim\left|\mathbf{F}_{\mathbf{h k l}}\right|^{2}$.
The structure amplitudes can be calculated (after correction for absorption, extinction, and Lorentz-polarisation effects) from the intensities $\mathrm{I}_{\mathrm{hkl}}(\rightarrow$ data reduction):

$$
\mathbf{I}_{\mathrm{hkl}}=\mathbf{K} \cdot \mathbf{F} \cdot \mathbf{A} \cdot \mathbf{E} \cdot \mathbf{L} \mathbf{p} \cdot\left|\mathbf{F}_{\mathrm{hk}}\right| 2
$$

($\mathrm{K}=$ scale factor, $\mathrm{F}=$ coincidence factor, $\mathrm{A}=$ absorption factor, $\mathrm{E}=$ extinction factor,
$\mathrm{Lp}=$ Lorentz-polarisation factor)

X-ray Powder Diffraction (XRPD)

In a powder sample all crystallites are statistically (randomly) oriented. Thus a powder sample produces for each family of lattice planes hkl a distinct scattering cone of high intensity

The cone angle is $\mathbf{4 \theta _ { \mathrm { hkl } }}$ (4 x the scattering angle θ_{hkl})
With the scattering angle $\boldsymbol{\theta}_{\mathrm{hk}}$, the lattice plane distance $\mathbf{d}_{\mathrm{hk} l}$ of the respective family of lattice planes can be calculated by use of the Bragg equation ($\lambda=$ wave length):

$$
\mathrm{d}_{\mathrm{hkl}}=\lambda /\left(2 \sin \theta_{\mathrm{hkl}}\right) .
$$

X-ray Powder Diffraction (XRPD)

Diffraction cones (reflections) with randomly or symmetry-caused identical d values fall together leading to symmetry-caused coincidences \rightarrow Net plane occurence factor

Flächenhäufigkeitsfaktoren für Pulververfahren

$h k l$	kubisch	tetrag.	hexagonal	rhombisch	monoklin	triklin
$h k l$	48	16	24	8	4	2
$h h l$	24	8	12	8	4	2
$h l h$	24	16	24	8	4	2
$l h h$	24	16	24	8	4	2
$h k 0$	24	8	12	4	2	2
$h 0 l$	24	16	12	4	4	2
$0 h l$	24	16	12	4	4	2
$h h h$	8	8	12	8	4	2
$h h 0$	12	4	6	4	2	2
$h 0 h$	12	8	12	4	4	2
$0 h h$	12	8	12	4	4	2
$h 00$	6	4	6	2	2	2
$0 k 0$	6	4	6	2	2	2
$00 l$	6	2	2	2	2	2

X-ray Powder Diffraction (XRPD)

Debye-Scherrer geometry

Debye-Scherrer pattern using a flat film

Debye-Scherrer pattern using a cylindric film

X-ray Powder Diffraction (XRPD)

Debye-Scherrer geometry

$$
\leftarrow---------180^{\circ} \geq 2 \theta_{\text {hkl }} \geq 0^{\circ}-------\rightarrow
$$

$$
\leftarrow 360-4 \theta_{\mathrm{hkl}} \rightarrow
$$

$$
\leftarrow 4 \theta_{h k l} \rightarrow
$$

X-ray Powder Diffraction (XRPD)

X-ray powder diffractometer

X-ray powder diffractometer and scattering geometry of/in a sample

X-ray Powder Diffraction (XRPD)

X-ray diffraction pattern of a powder sample

X-ray Powder Diffraction (XRPD)

Powder diffractometer with Bragg-Brentano geometry

Normal of the sample bisects the angle between primary and diffracted beam directions.

- Sample is fixed, tube and detector turn to each other by an angle θ.
- Tube is fixed, sample and detector turn by an angle θ, and 2θ, respectively in the same direction.

X-ray Powder Diffraction (XRPD)

Beam course for the Bragg-Brentano geometry

X-ray Powder Diffraction (XRPD)

Powder Diffractometer Bruker AXS D 5000

X-ray Powder Diffraction (XRPD)

Schematic diagram of the beam course in a powder diffractometer with a focusing monochromator and PS detektor

X-ray Powder Diffraction (XRPD)

Standard measurement in Bragg-Brentano geometry (corundum plate)

X-ray Powder Diffraction (XRPD)

Comparison with own data file

d	3.99	2.91	4.73	9.47	$\mathrm{Ba}\left(\mathrm{N}_{3}\right)_{2}$						\%	
$1 / 1_{1}$	100	80	70	20	Baritm Azide							
Rad. Filter Dia. Cut off \square I/I I_{1} Visual Ref. Tokar, Krischner and Rad1, Montash. Chem, 96, 3, 932-40 (1965)						d A	1/11	hk1	d A	I/ I_{1}	hkl	
						9.47	20	001	2.295	40	211	
						5.33	20	100	2.282	40	210	
						5.03	60	101	2.196	70	020,113	
$\begin{aligned} & \text { Sys. Monoclinic } \\ & \mathbf{a}_{0} 5.42 \quad b_{0}{ }^{4.39} \\ & a \\ & \text { Ref. Ibid. } \end{aligned}$					$\stackrel{C}{C} \underset{D \times 3.25}{ }$	4.73 4.35	70 30	002 101	2.182 2.152	20 10	${ }_{211}^{202}$	
			3.99			100	011	2.083	30	014		
			3.39			60	110	2.046	10	118		
			3.27			20	102	2.030	10	120		
$\begin{aligned} & \epsilon a \\ & 2 \mathrm{~V} \\ & \text { Ref. Ibid. } \end{aligned}$		$\begin{gathered} \mathrm{n} \omega \beta \\ 3.22 \end{gathered}$		mp	Color ${ }^{\text {Sign }}$		3.15	30	003	2.013	40	121
		3.08					70	111	1.992	60	213,022	
		2.943					20	103	1.961	30	121	
		2.909	80				112	1.952	30	212		
		$\begin{aligned} & 2.693 \\ & 2.673 \end{aligned}$	40				201	1.942	10	204		
						30	200	1.893	20	005,203		
						2.627	10	112	1.823	20	122	
						2.562 2.537	70 10	013	1,803	30	023	
						2.514	10	202				
						2.468	20	201				
						2.366	10	004				

Comparison with JCPDS

Phase analysis or identification of a sample using XRPD (JCPDF = Joint Commitee of Powder Diffraction File)

X-ray Powder Diffraction (XRPD)

Illustration of a phase change by use of XRPD patterns

X-ray Powder Diffraction (XRPD)

- D8 ADVANCE,
- Cu radiation, 40kVI40 mA
- Divergence aperture: 0,1
- Increment: 0.007

Counting time/step: 0.1 sec
Speed: $4.2^{\circ} / \mathrm{min}$.
Total time: 3:35 min.

Small angle scattering of silver behenate $\left(\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{20}\right.$ - COOAg$)$
(Bragg-Brentano geometry)

X-ray Powder Diffraction (XRPD)

Quantitative phase analysis of cement

X-ray Powder Diffraction (XRPD)

Quantitative phase analysis of cement

Literature

-Röntgenfeinstrukturanalyse von H. Krischner, Vieweg (Allgemeine Einführung, Schwerpunkt Pulvermethoden) oder alternativ
-Röntgen-Pulverdiffraktometrie von Rudolf Allmann, Clausthaler
Tektonische Hefte 29, Sven von Loga, 1994
-Kristallstrukturbestimmung von W. Massa, Teubner, Stuttgart, 1984
-Untersuchungsmethoden in der Chemie von H. Naumer und W. Heller, Wiley-VCH
(Einführung in die moderne Analytik und Strukturbestimmungsmethoden)
-X-Ray Structure Determination von G. H. Stout, L.H. Jensen, MacMillan, London
(Einführung in die Kristallstrukturanalyse für Fortgeschrittene)

