Advanced Inorganic Chemistry part Inorganic Molecules Exercises 1 and 2 (electronic and molecular structure, building reaction, and chemical and physical properties of inorganic molecules and ions)

Exercise 1

Of the 6 molecules and ions each listed below, give the oxidation numbers of the non-ligand atoms, draw a suitable Lewis structure with the formal charges (if necessary) by using lines for bond and free electron pairs and dots for single electrons, the ψ -type AL_mE_n (m = number of ligands, n = number of free electron pairs or single electrons) the resulting ψ -polyhedron, the gas phase structure/shape and the symmetry of the molecule (in form of a draw or description), and mark those with a star which have no resonance structures (no other electronic structure).

Give the result in form of a table as given below.

Formula	Ox. no.	Lewis struct.	ψ-type	ψ-polyhedron	Mol. struct.	Sym.
NF ₃	3+	draw it	AL ₃ E	tetrahedron	trig. pyr.	C _{3v}

Abdulhussain	AsX ₃	ClF ₅	N ₂	OX ₂	S ₂	SeX ₂
Ali	AsX_4^+	CO ₂	N ₂ O	$P_2O_6^{4-}$	S_2Cl_2	SeX ₄
Bayat	BeCl ₂	CO3 ²⁻	$N_2 O_2^{2-}$	$P_2O_7^{4-}$	S_2F_{10}	SF_4
Benner	BeX ₄ ²⁻	CX_4	N_2O_3	P_2Se_5	S_2F_2	SF_6
Frettlöh	BrF ₃	GaI ₃	N_2O_4	$P_4(NR)_6$	$S_2O_3^{2-}$	SiF ₆ ²⁻
Haas	BrF ₄	GeX ₄	N_2O_5	P_4O_{10}	$S_2O_4^{2-}$	SiX ₄
Kaouk	BrF ₅	$H_2PO_2^-$	NO	P_4O_6	$S_2O_6^{2-}$	SnCl ₂
Klotz	BX ₃	HgX_2	NO^+	P_4S_6	SbCl ₅	SO ₂
Kohlhaas	BX_4^-	HPO3 ²⁻	NO ₂	PCl_3F_2	SbF ₅	SO ₃
Lavoie-Cardinal	$[(CH_3)_2PN]_3$	I_2Cl_6	NO ₂ ⁻	PCl ₅	SbX ₃	SO ₃ ²⁻
Özyürek	[(CH ₃) ₂ SiO] ₃	I_3^-	NO_2^+	PCl ₆ ⁻	SCl ₂	SO4 ²⁻
Peram	$[Cl_2PN]_3$	ICl ₂ ⁻	NO ₃ ⁻	PF ₅	SCl ₄	SX ₂
Tehrani	$[Cl_2PN]_4$	ICl ₄ ⁻	NX ₃	PF_6	Se_2F_{10}	Te(OH) ₆
Thomas	CdX ₂	IF ₅	NX_4^+	PO4 ³⁻	SeF ₄	TeF ₄
Zamrik	ClF ₃	IF ₇	OH_3^+	PX ₃	SeF ₆	TeF ₆

Molecules/ions to be treated in exercise 1.

* X = F, Cl, Br, and/or I

Every student has to treat the 6 molecules/ions given in the table.

Advanced Inorganic Chemistry part Inorganic Molecules Exercises 1 and 2 (electronic and molecular structure, building reaction, and chemical and physical properties of inorganic molecules and ions)

Exercise 2

Of the molecules and ions listed below, give the formula, the names, a suitable building reaction, the reactivity, the color, the state of matter under normal conditions (if possible), and the magnetic properties (d for dia- and p for paramagnetic).

As far as possible, give the result in form of a table.

Abdulhussain	AsX ₃	ClF ₅	N ₂	OX ₂	S_2	SeX ₂
Ali	AsX_4^+	CO ₂	N ₂ O	$P_2 O_6^{4-}$	S_2Cl_2	SeX_4
Bayat	BeCl ₂	CO3 ²⁻	$N_2O_2^{2-}$	$P_2O_7^{4-}$	S_2F_{10}	SF_4
Benner	BeX4 ²⁻	CX_4	N ₂ O ₃	P ₂ Se ₅	S_2F_2	SF ₆
Frettlöh	BrF ₃	GaI ₃	N_2O_4	$P_4(NR)_6$	$S_2O_3^{2-}$	$\mathrm{SiF_6}^{2-}$
Haas	BrF4	GeX ₄	N ₂ O ₅	P ₄ O ₁₀	$S_2O_4^{2-}$	SiX ₄
Kaouk	BrF ₅	$H_2PO_2^-$	NO	P_4O_6	$S_2O_6^{2-}$	SnCl ₂
Klotz	BX ₃	HgX ₂	NO^+	P_4S_6	SbCl ₅	SO ₂
Kohlhaas	BX4	HPO3 ²⁻	NO ₂	PCl ₃ F ₂	SbF ₅	SO ₃
Lavoie-Cardinal	[(CH ₃) ₂ PN] ₃	I_2Cl_6	NO_2^-	PCl ₅	SbX ₃	SO ₃ ²⁻
Özyürek	[(CH ₃) ₂ SiO] ₃	I_3^-	NO_2^+	PCl ₆ ⁻	SCl ₂	SO ₄ ²⁻
Peram	$[Cl_2PN]_3$	ICl ₂ ⁻	NO ₃ ⁻	PF ₅	SCl ₄	SX_2
Tehrani	[Cl ₂ PN] ₄	ICl ₄ ⁻	NX ₃	PF_6^-	Se ₂ F ₁₀	Te(OH) ₆
Thomas	CdX ₂	IF ₅	NX_4^+	PO4 ³⁻	SeF ₄	TeF ₄
Zamrik	ClF ₃	IF ₇	OH_3^+	PX ₃	SeF ₆	TeF ₆

Molecules/ions to be treated in exercise 2.

* X = F, Cl, Br, and/or I

Every student has to treat the 6 molecules/ions given in the table.

For help, information, and further exercise, refer to the given textbook(s) of inorganic chemistry and our corresponding website (<u>http://anorganik.chemie.uni-siegen.de</u>).

Advanced Inorganic Chemistry part Inorganic Molecules

Exercises 1 and 2 (electronic and molecular structure, building reaction, and chemical and physical properties of inorganic molecules and ions)

Exercise 3

Please explain why P₄O₆, and P₄O₁₀ are built instead of P₂O₃ and P₂O₅, respectively.

Exercise 4

 $(Cl_2PN)_3$ was found to have symmetry D_{3h} . Please explain why it is not aromatic.

Exercise 5

Name and describe structurally two forms each of the elements C, P, and S.

Exercise 6

Name and describe structurally the allotropic forms of the main group IV and V elements.

Exercise 7

Name and describe structurally the thermodynamically stable forms of the elements C, P, and S.

Exercise 8

Name and describe structurally the allotropic forms of the main group VI elements.

For help, information, and further exercise, refer to the given textbook(s) of inorganic chemistry and our corresponding website http://www.uni-siegen.de/~anchem/be/InorganicMoleculesSum.htm