X-ray analysis
1. Basic crystallography
2. Basic diffraction physics
3. Experimental methods

Introduction Noble prizes associated with X-ray diffraction

- 1901 W. C. Roentgen (Physics) for the discovery of X-rays.
- 1914 M. von Laue (Physics) for X-ray diffraction from crystals.
- 1915 W. H. and W. L. Bragg (Physics) for structure derived from X-ray diffraction.
- 1917 C. G. Barkla (Physics) for characteristic radiation of elements.
- 1924 K. M. G. Siegbahn (Physics) for X-ray spectroscopy.
- 1927 A. H. Compton (Physics) for scattering of X-rays by electrons.
- 1936 P. Debye (Chemistry) for diffraction of X-rays and electrons in gases.
- 1962 M. Perutz and J. Kendrew (Chemistry) for the structure of hemoglobin.
- 1962 J. Watson, M. Wilkins, and F. Crick (Medicine) for the structure of DNA.
- 1979 A. Cormack and G. Newbold Hounsfield (Medicine) for computed axial tomography.
- 1981 K. M. Siegbahn (Physics) for high resolution electron spectroscopy.
- 1985 H. Hauptman and J. Karle (Chemistry) for direct methods to determine structures.
- 1988 J. Deisenhofer, R. Huber, and H. Michel (Chemistry) for the structures of proteins that are crucial to photosynthesis.

Introduction What's the result of X-ray analyses?

Crystal data

Formula sum Crystal system Space group Unit cell dimensions Z $\begin{array}{l} {\rm Mg_2SiO_4~(Olivine)} \\ {\rm orthorhombic} \\ {\it P~b~n~m~(no.~62)} \\ {\it a=4.75(2)~{\rm \AA},~b=10.25(4)~{\rm \AA},~c=6.00(2)~{\rm \AA}} \\ {\it 4} \end{array}$

Atomic coordinates

Atom	Ox.	Wyck.	X	У	Z
Mg1	+2	4 <i>a</i>	0.00000	0.00000	0.00000
Mg2	+2	4 <i>c</i>	0.00995(600)	0.27734(600)	0.75000
Si1	+4	4 <i>c</i>	0.07373(500)	0.4043(50)	0.25000
01	-2	4 <i>c</i>	0.23242(1000)	0.0918(100)	0.75000
02	-2	4 <i>c</i>	0.2793(100)	0.05078(1000)	0.25000
O3	-2	8 <i>d</i>	0.22266(1000)	0.33594(1000)	0.46289(1000)

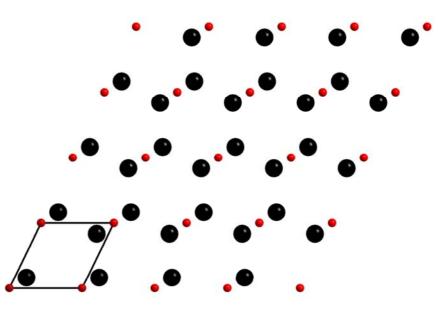
Structure

Chemical information (bonding, composition)

Real structure (defects)

1. Basic crystallography Lattice, motif and structure

Example: structure and lattice in 2D



Lattice

- pattern of points
- no chemical information, mathematical description
- no atoms, but points and lattice vectors (a, b, c, α , β , γ), unit cell
- Motif (characteristic structural feature, atom, group of atoms...)
- Structure = Lattice + Motif
 - contains chemical information (e.g. environment, bond length...)
 - describes the arrangement of atoms (symmetry of the crystal)

1. Basic crystallography Unit cell: interconnection of lattice and structure

Definition:

Unit cell = parallel sided region of the lattice from which the entire crystal can be constructed by purely translational displacements

- contents of unit cell represents chemical composition (multiples of chemical formula)
- primitive cell: simplest cell, contains one lattice point
- centered cell: more than one point inside unit cell

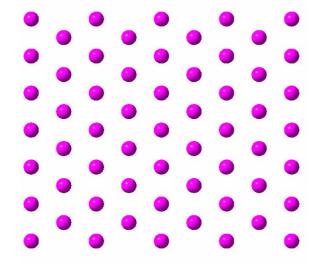
on nt

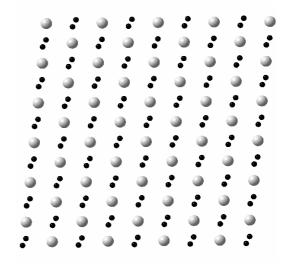
Conventions:

- 1. Cell edges should coincide with symmetry axes or reflection planes
- 2. The smallest possible cell which fulfills 1. should be chosen

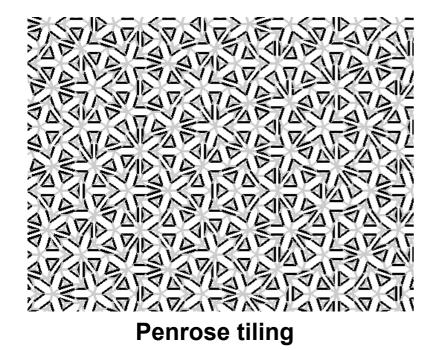
1. Basic crystallography Unit cell: exercise

Determine the primitive unit cell and one example for a centered setting

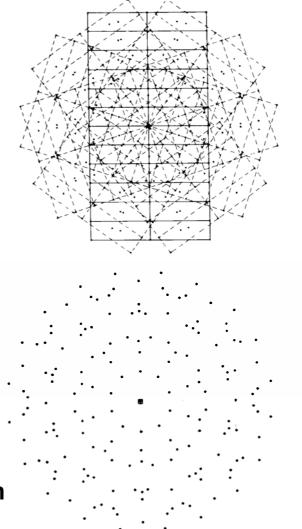




1. Basic crystallography Aperiodic structures: e.g. quasicrystals



Forbidden symmetry produced by superposition

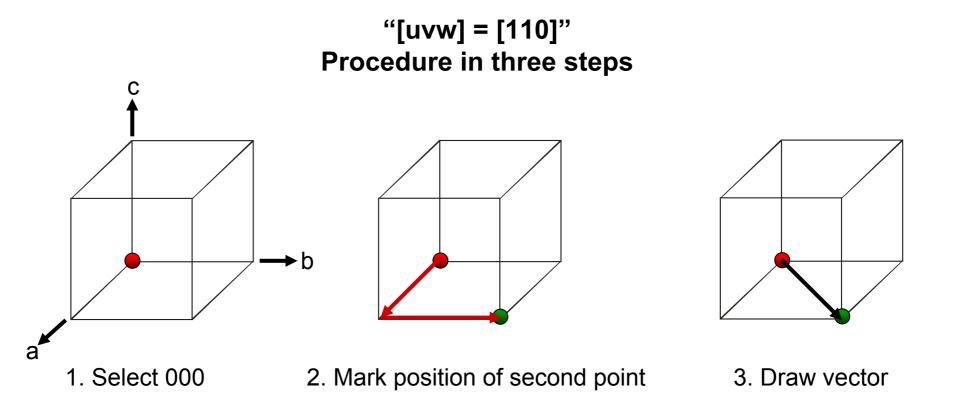


1. Basic crystallography Unit cells and crystal system

- millions of periodic structures but 7 types of primitive cells (crystal systems)
- crystal system = particular restriction concerning the unit cell
- crystal system = unit cell with characteristic symmetry elements (later)

Crystal system	Restrictions axes	Restrictions angles
Triclinic	_	-
Monoclinic	-	$\alpha = \gamma = 90^{\circ}$
Orthorhombic	-	$\alpha = \beta = \gamma = 90^{\circ}$
Tetragonal	a = b	$\alpha = \beta = \gamma = 90^{\circ}$
Trigonal	a = b	$\alpha = \beta = 90^{\circ}, \ \gamma = 120^{\circ}$
Hexagonal	a = b	$\alpha = \beta = 90^{\circ}, \ \gamma = 120^{\circ}$
Cubic	a = b = c	$\alpha = \beta = \gamma = 90^{\circ}$

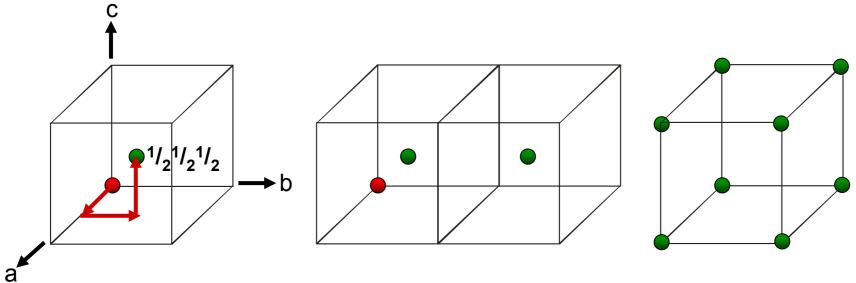
1. Basic crystallography Indexation of directions in direct space



Convention: right-handed coordinate system

- middle finger: a
- thumb: b
- forefinger: c

1. Basic crystallography Fractional coordinates (position of the atoms)

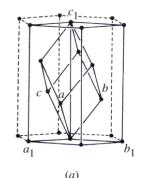


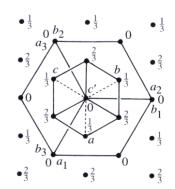
- possible values for x, y, z: [0; 1], atoms are multiplied by translations
- atoms are generated by symmetry elements (later)
- Example: <u>Sphalerite</u> (ZnS)
- Equivalent points are represented by one triplet only
 - equivalent by translation
 - equivalent by other symmetry elements (later)

1. Basic crystallography Centered unit cells- Bravais-type

The Bravais-types P, F, I, C, A, B, R denote centerings of the unit cells

- Centering of unit cell = Translation
- 7 crystal systems, 14 characteristic unit cells (i.e. Bravais-type)
- 7 types of centerings:
- P: no centering (0,0,0)
- F: translation of each point by (1/2,1/2,0);(0,1/2,1/2);(1/2,0,1/2)
- I: translation of each point by (1/2,1/2,1/2)
- C: translation of each point by (1/2,1/2,0)
- A: translation of each point by (0,1/2,1/2)
- B: translation of each point by (1/2,0,1/2)
- R: translation of each point by (2/3,1/3,1/3);(1/3,2/3,2/3)
- All fractional coordinates are multiplied by centerings





1. Basic crystallography Bravais-type: example

<u>Crystal data</u>		
Formula sum	NaCl	
Crystal system	cubic	
Space group	<i>F</i> m -3 m (no. 225)	
Unit cell dimensions	<i>a</i> = 5.6250(5) Å	
Z	4	Halite

Atomic coordinates

Atom	Ox.	Wyck.	Χ	У	Ζ
Na	+1	4a	0	0	0
CI	-1	4 <i>b</i>	1/2	1/2	1/2

1. Basic crystallography Wyckoff-notation and occupancy factor

Crystal data

Formula sum Crystal system Space group Unit cell dimensions Z Cu_{0.8} In_{2.4} Se₄ tetragonal *I*-4 2 m (no. 121) a = 5.7539(3) Å c = 11.519(1) Å 2

Atomic coordinates

Molecules

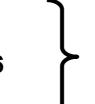
Atom	Ox.	Wyck.	Occ.	X	У	Ζ
Cu1	+1	2a	0.8	0	0	0
In1	+3	4 <i>d</i>	1.0	0	1/2	1/4
In2	+3	2b	0.4	0	0	1/2
Se1	-2	8 <i>i</i>	1.0	1/4	1/4	1/8

Occ. factors × Wyckoff number = no. of atoms/unit cell

1. Basic crystallography Crystallographic symmetry elements

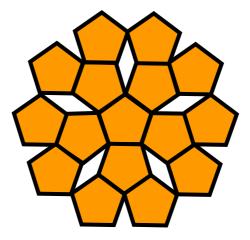
SE in crystallography:

- Inversion
- Mirror
- Rotation axes: 1,2,3,4,6
- Translations



Coupling and combination

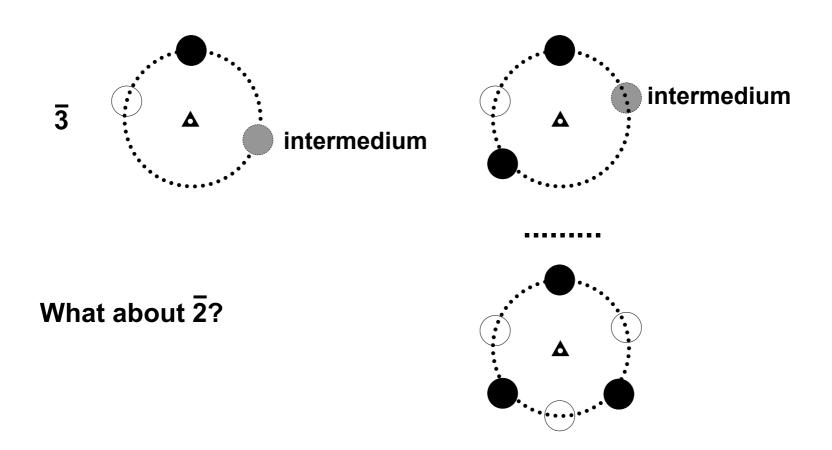
Question: Why is e. g. 5 forbidden in crystal structures?



1. Basic crystallography Coupling- rotation and inversions

Coupling:

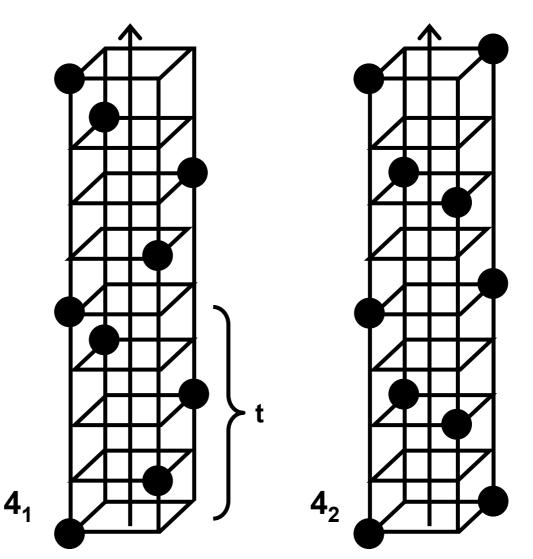
- both SE are applied in one step
- one of the two coupled SE is an intermedium



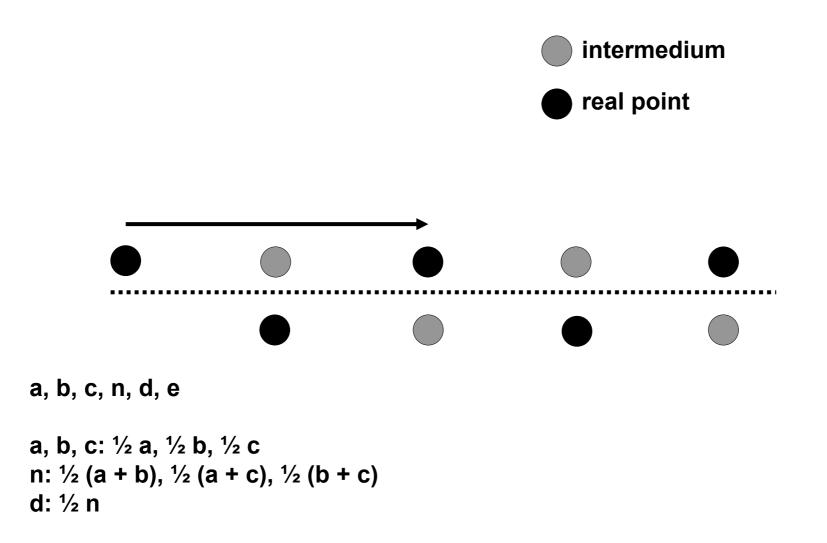
1. Basic crystallography Coupling- rotation and translation- Screw axes X_n

Strategy: X-fold rotation after translation of n/X along the screw axis

 $2_{1} \\ 3_{1} 3_{2} \\ 4_{1} 4_{3} 4_{2} \\ 6_{1} 6_{5} 6_{2} 6_{4} 6_{3}$



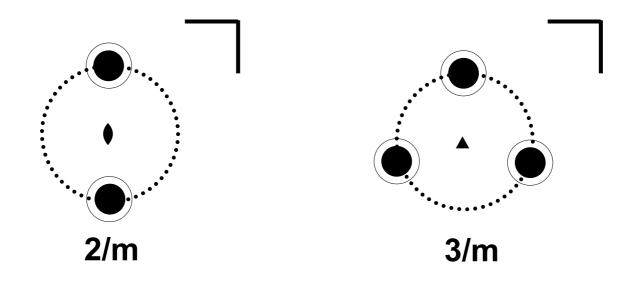
1. Basic crystallography Coupling- mirror and translation – Gilde planes



1. Basic crystallography Combination of mirror and rotation

Combination:

- both SE are applied (two steps)
- no intermedium



1. Basic crystallography Directions of characteristic symmetry elements

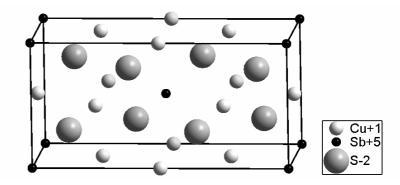
Crystal system	Characteristic SE	Char. direction / sequence
Triclinic	1, 1	-
Monoclinic	2 and/or m	b
Orthorhombic	2 (3×) and/or m(3×)	a, b, c
Trigonal	3 (1×)	c, a, [210]
Tetragonal	4 (1×)	c, a, [110]
Hexagonal	6	c, a, [210]
Cubic	3 (4×)	[111], a, [110]

What can we learn from this table?

- The knowledge of the characteristic SE allows to determine the crystal system
- Pseudometrics possible, e. g. monoclinic with β = 90°
- Systematization of SE in space group symbols

Repetition Basic terms of 3D crystallography

- Lattice, motif and structure
- Unit cell (primitive and centered)
- Wyckoff notation, occupancy factor, composition of crystals
- Crystal system
- Bravais type
- Crystallographic SE



- Coupling of SE: rotoinversion, screw axes, glide planes
- Combination of SE
- Characteristic SE of the crystal casses

1. Basic crystallography Crystal class

32 Crystal classes: Combination of SE without translations

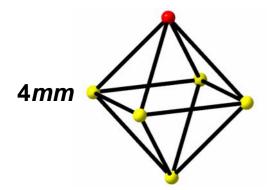
Crystal system	Restriction	Crystal Class
Triclinic	-	1,1
Monoclinic	$- \alpha = \gamma = 90^{\circ}$	2, m, 2/m
Orthorhombic	$\mathbf{a} = \mathbf{b}$ $\alpha = \beta = \gamma = 90^{\circ}$	222, mm2, 2/m 2/m 2/m
Trigonal	$\mathbf{a} = \mathbf{b}$ $\alpha = \beta = 90^{\circ}, \ \gamma = 120^{\circ}$	3, 3, 32, 3m, 32/m
Tetragonal	$\mathbf{a} = \mathbf{b}$ $\alpha = \beta = \gamma = 90^{\circ}$	4, 4, 4/m, 422, 4mm, 42m, 4/m 2/m 2/m
Hexagonal	$\mathbf{a} = \mathbf{b}$ $\alpha = \beta = 90^{\circ}, \ \gamma = 120^{\circ}$	6, 6 , 6/m, 622, 6mm, 6 m2, 6/m 2/m 2/m
Cubic	$\mathbf{a} = \mathbf{b} = \mathbf{c}$ $\alpha = \beta = \gamma = 90^{\circ}$	23, 2/m 3, 432, 43m, 4/m 3 2/m

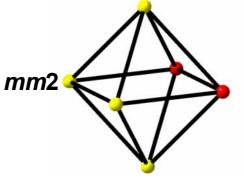
The atoms (A, B and C) of a tetragonal structure are located on: $0^{1}/_{2}0$ (A), $1^{1}/_{2}0$ (B) and 000 (C). Assume low symmetry

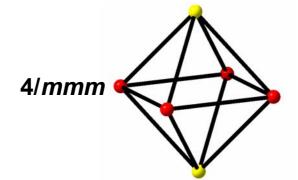
- Sketch the unit cell along [001]
- Determine the composition of a crystal with this structure
- Describe the environment of A, B and C

Repeat the exercise for a cubic structure!

1. Basic crystallography Crystal Classes- examples







Crystal System	Charact. SE	Direction / Sequence
Triklin	1, 1	-
Monoklin	2 and/or m	b
Orthorhombisch	2 (3×) und/oder m(3×)	a, b, c
Trigonal	3 (1×)	c, a, [210]
Tetragonal	4 (1×)	c, a, [110]
Hexagonal	6	c, a, [210]
Kubisch	3 (4×)	a, [111], [110]

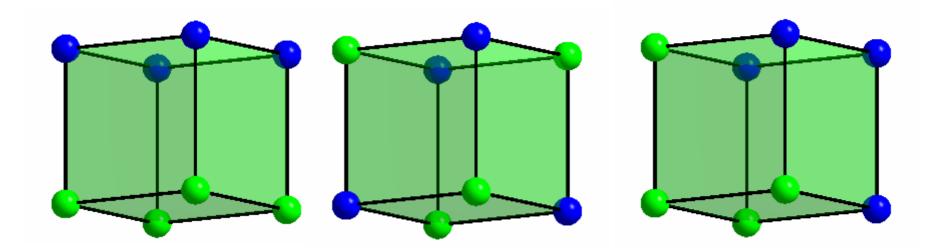
1. Basic crystallography Exercise: restrictions of the crystal systems

1	In tetragonal crystals, the restriction $\alpha = \beta = \gamma = 90^{\circ}$ can not be violated	Right	Wrong
2	The characteristic symmetry element of cubic crystals is the fourfold axis	Right	Wrong
3	For monoclinic crystals β must be \neq 90°	Right	Wrong
4	$\alpha = \beta = \gamma = 90^{\circ}$ is not possible for triclinic crystals	Right	Wrong
5	A crystal system with $\alpha = \beta = \gamma = 90^{\circ}$ and $a = b = c$ must be denominated "cubic"	Right	Wrong
6	A crystal system with $\alpha = \beta = \gamma = 90^{\circ}$ and $a \neq b \neq c$ can be denominated "orthorhombic"	Right	Wrong

1. Basic crystallography Crystal Classes- exercises

Determine the SE of following arrangements

Specify the crystal system and the crystal class



1. Basic crystallography Space groups: Introduction

A crystallographic space group is a set of symmetry operations which describes all periodic patterns (230, 3D) in 3D space

Space group notations (H.-M.-notation)

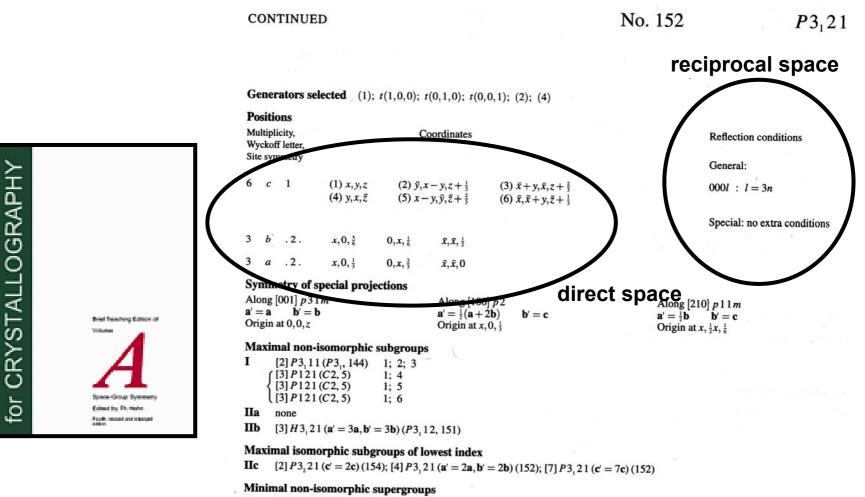
- first letter: Bravais-type (lattice centering)
- second and subsequent numbers and letters: symmetry elements along characteristic directions
- caution: some notations are reduced

P 3₁ 2 1

1. Basic crystallography Space group tables

TABLES

NTERNATIONAL



- I [2] P6, 22 (178); [2] P6, 22 (181)
- II [3] $H_{3,21}(P_{3,12,151});$ [3] R_{32} (obverse) (155); [3] R_{32} (reverse) (155); [3] $P_{321}(c' = \frac{1}{3}c)$ (150)

1. Basic crystallography Space group: Examples (H.M. notation)

Example 1: *Pm* (full notation)

- P means primitive (no centering)
- characteristic SE: $m \rightarrow monoclinic$
- m perpendicular to [010]

Example 2: C2/c (full notation)

- C means ab-plane (001) is centered
- characteristic SE: 2 or $c \rightarrow$ monoclinic.
- 2 along b, c perpendicular to b

Example 3: $P6_3/mmc = P6_3/m 2/m 2/c$ (full notation)

- P means primitive (no centering)
- characteristic SE: $6_3 \rightarrow$ hexagonal
- 6₃ along c, m perpendicular c, 2 along a, m perpendicular a, 2 along [210], c perpendicular [210]

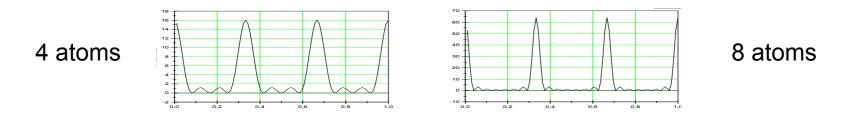
Information derived from H.M. notation

- Crystal system, Crystal class
- Centrosymmetric / non centrosymmetric
- Reflection conditions ("Extinctions")

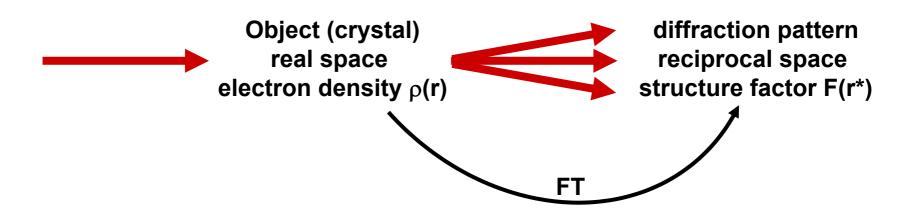
2. Basic diffraction physics Model for X-ray diffraction (XRD)

Scattering can be separated into:

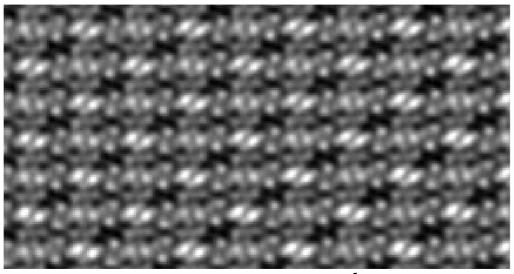
- scattering by all electrons of the distinct atoms of the structure (atomic form factor)
- scattering by all atoms of the structure (structure factor, convolution lattice and unit cell)
- scattering by the whole crystal (finite size effects: broadening of FT)



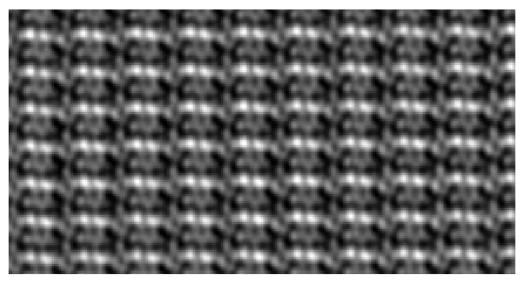
Mathematical description: Fourier transformation

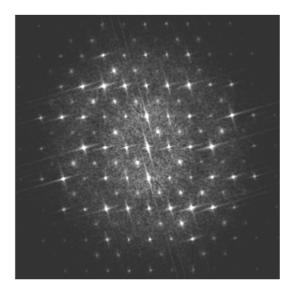


2. Basic diffraction physics Example: FFTs in electron microscopy



<u>1 nm</u>







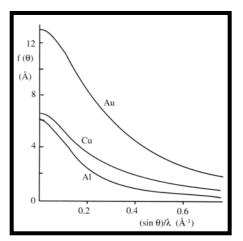
2. Basic diffraction physics Basic FTs in XRD I: Atomic scattering factor

$$\rho(\mathbf{r}) = \int_{V^*} \mathbf{F}(\mathbf{r}^*) \exp(-2i\pi(\mathbf{r}\mathbf{r}^*)) d\mathbf{r}^*$$
 $\mathbf{F}(\mathbf{r}^*) = \int_{V} \rho(\mathbf{r}) \exp(2i\pi(\mathbf{r}\mathbf{r}^*)) d\mathbf{r}^*$

• Scattering by atoms (FT of U_a(r)) $f_a(r^*) = \int_V U_a(r) (\sin(2\pi r r^*))/2\pi r r^* dr \sim \sum f_{el}(r^*), \text{ with: } U_a(r) = 4\pi r^2 \rho_a(r)$

Experimental consequences

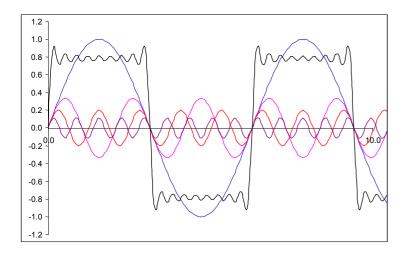
- high diffracted intensity at low θ , e.g. left side of powder DP
- "light atoms problem", consequence: alternative methods



2. Basic diffraction physics Basic FTs in XRD II: periodic and infinite crystals

$$\rho(\mathbf{r}) = \int_{V^*} \mathbf{F}(\mathbf{r}^*) \exp(-2i\pi(\mathbf{r}\mathbf{r}^*)) d\mathbf{r}^*$$
 $\mathbf{F}(\mathbf{r}^*) = \int_{V} \rho(\mathbf{r}) \exp(2i\pi(\mathbf{r}\mathbf{r}^*)) d\mathbf{r}$

- $\rho(\mathbf{r})$ exhibits the periodicity of the crystal: Fourier series $\rho(\mathbf{r}) = \sum C_g \exp (2i\pi(\mathbf{r}^*\mathbf{r})), C_g$: Fourier coefficient $= 1/V \sum F_{hkl} \exp (2i\pi(hx + ky + lz)), hkl$: rec. space, xyz: dir. space
- $F_{hkl} = \sum f_i \exp(2\pi i(hx + ky + lz))$, summing up the contributions of all atoms



Example: graph of a rectangular

 $f(x) = \sin x + \sin 3x/3 + \sin 5x/5 + \sin 7x/7 + \dots$

2. Basic diffraction physics Scattered intensity: Structure factor F_{hkl}

$$F_{hkl} = \Sigma f_i \exp(2\pi i(hx + ky + lz))$$

$$= \Sigma f_i [\cos (2\pi (hx + ky + lz)) + i \sin (2\pi (hx + ky + lz))]$$

$$= \Sigma A_i + i B_i$$

imaginary

Remarks

- F_{hkl} : summing up the contributions from all atoms
- "All structural information is in one reflection"
- ϕ : phase of F_{hkl} contains structure information, ϕ = arctan B/A
- $IF_{hkl}I = (A^2 + B^2)^{1/2} \sim I = :$ phase problem, i.e. phase is lost
- Friedel's law: I_{hkl} = I_{-h-k-l}
- Symmetry of DP: centrosymmetric (first approximation)

2. Basic diffraction physics Calculations of structure factors: examples

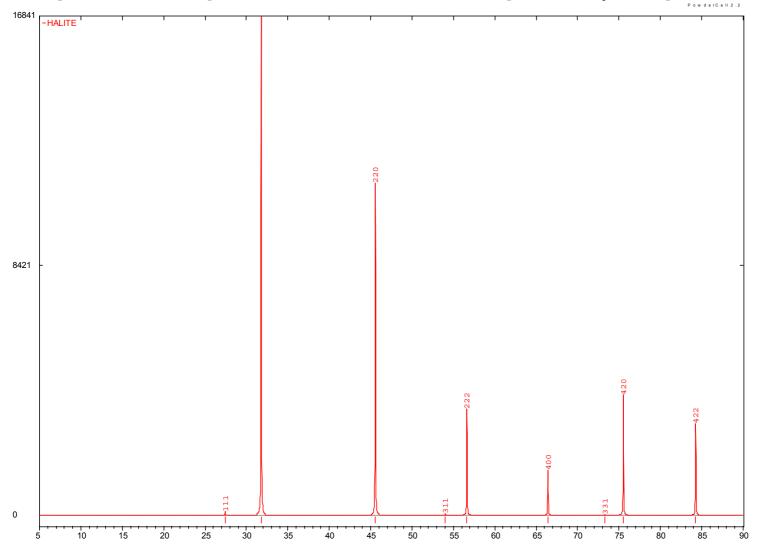
$$\mathbf{F}_{hkl} = \sum \mathbf{f}_i \exp(2\pi \mathbf{i}(h\mathbf{x} + k\mathbf{y} + l\mathbf{z}))$$

=
$$\sum f_i [\cos (2\pi(hx + ky + lz)) + i \sin (2\pi(hx + ky + lz))]$$

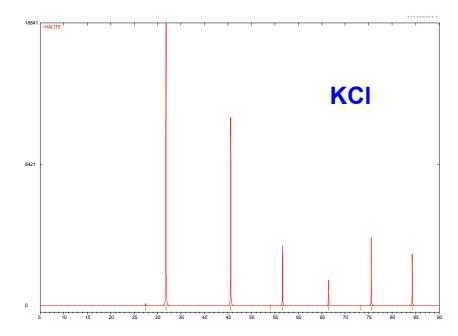
- Primitive (one atom type)
- Calculation for CsCl
- BCC (one atom type)
- Calculation for NaCl

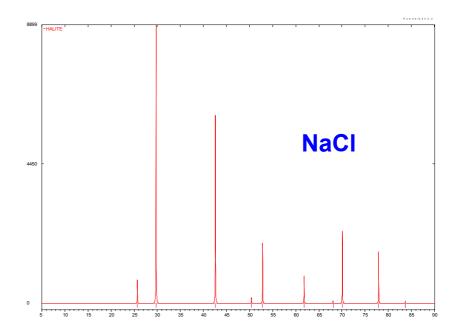
2. Basic diffraction physics Example NaCl

Each peak corresponds to one set of hkl planes (or equivalent plane)



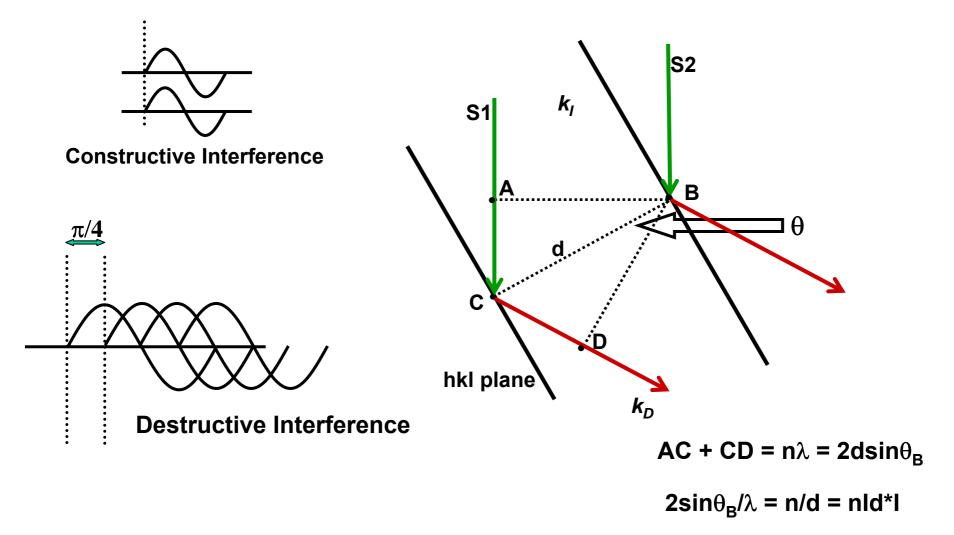
2. Basic diffraction physics NaCl vs. KCl



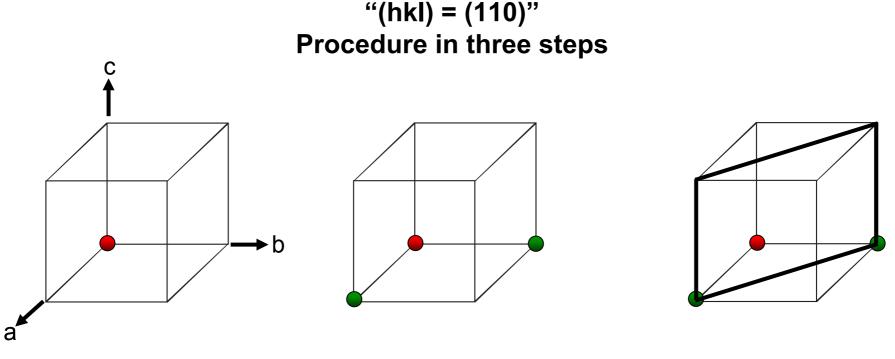


2. Basic diffraction physics Geometrical approach, Bragg's law (BL)

Description by wave vector: k_I : incident beam, k_D : diffracted beam; $lk_I l = lk_D l = 1/\lambda$



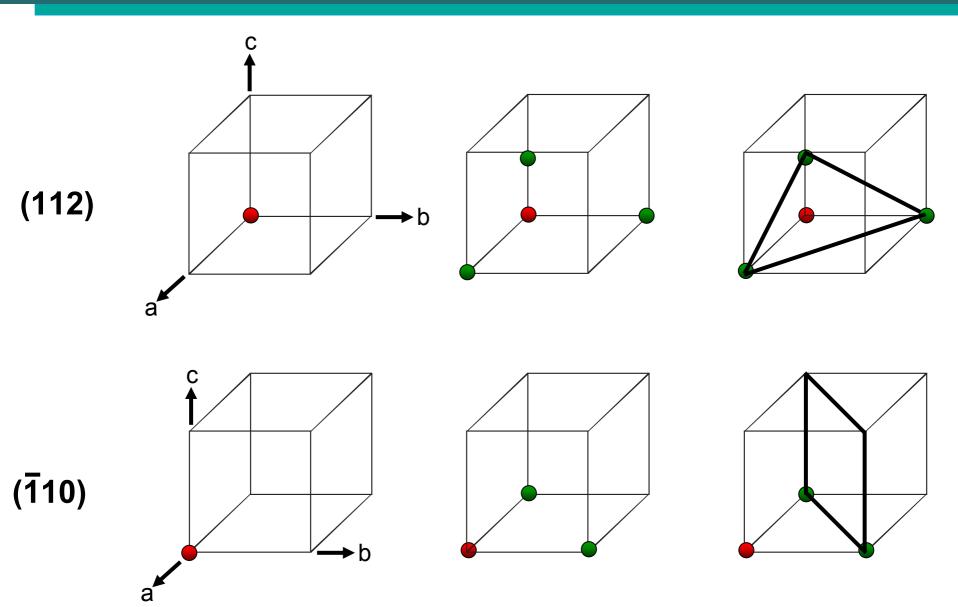
2. Basic diffraction physics hkl: indices of planes in direct space



- 1. Select 000 2. Mark intercept of the plane, i. e. reciprocal values 1/h on a, 1/k on b, 1/l on c Three points, I = 0 means: plane || c
- 3. Draw plane

Convention: right-handed coordinate system

2. Basic diffraction physics hkl planes: examples



2. Basic diffraction physics Properties / Applications of d/d*

- d ~ to the normal vector of an hkl plane
- IdI ~ distance of two individual hkl planes of the same type

Square form of BL (e.g. orthorhombic)

- $1/d^2 = h^2/a^2 + k^2/b^2 + l^2/c^2$
- $\sin^2\theta = \lambda^2/4 (h^2/a^2 + k^2/b^2 + l^2/c^2)$
- Application: indexing of DP

Example for manual indexing

- (e.g. cubic): $(1/d)^2 = (1/a)^2 (h^2 + k^2 + l^2)$, $d = \lambda/(2\sin\theta)$
- Determine d-spacing of each peak from its 2θ value (using Bragg's Law)
- Create a table of 1/d² values for each peak
- Look for a common factor (1/a²) that can be divided into each of the (1/d)² values

2. Basic diffraction physics Manual indexation: example 1

2-theta	d	1000/d ²		hkl
22.21	4.000	62.5	62.5/62.5=1	100
31.61	2.828	125.0	125.0/62.5=2	110
38.97	2.309	187.6	187.6/62.5=3	111
45.31	2.000	250.0	250.0/62.5=4	200
51.01	1.789	312.4	312.4/62.5=5	210
56.29	1.633	375.0	375.0/62.5=6	211
66.00	1.414	500.2	500.2/62.5=8	220
70.58	1.333	562.8	562.8/62.5=9	221
75.03	1.265	624.9	624.9/62.5=10	310

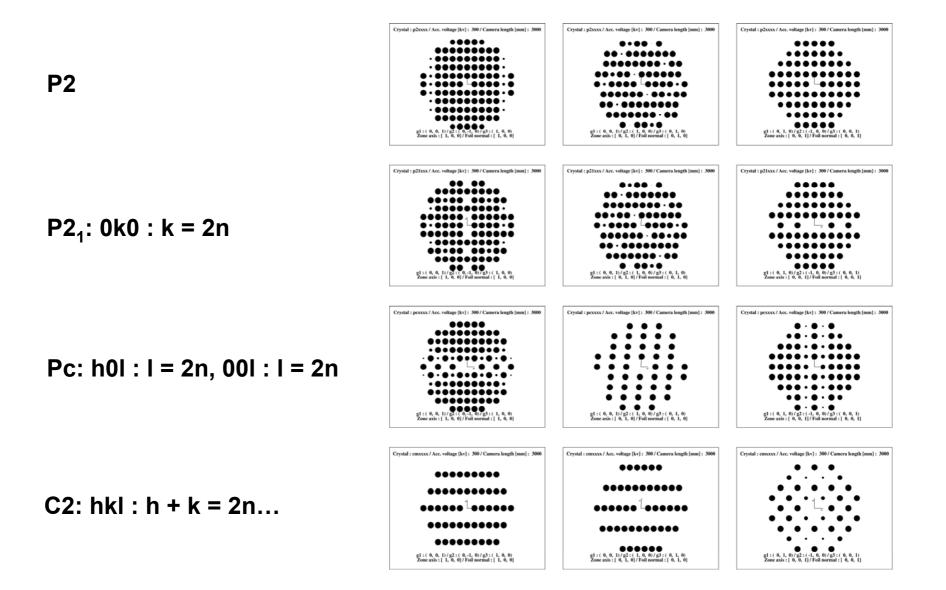
2. Basic diffraction physics Manual indexation: example 2 (extinctions)

2-theta	d	1000/d	2	hkl
28.077	3.175	99.2	99.2/33=3	111
32.533	2.750	132.2	132.2/33=4	200
46.672	1.945	264.3	264.3/33=8	220
55.355	1.658	363.8	363.8/33=11	311
58.045	1.588	396.6	396.6/33=12	222
68.140	1.375	528.9	528.9/33=16	400
75.247	1.262	627.9	627.9/33=19	331
77.559	1.230	661.0	661.0/33=20	420

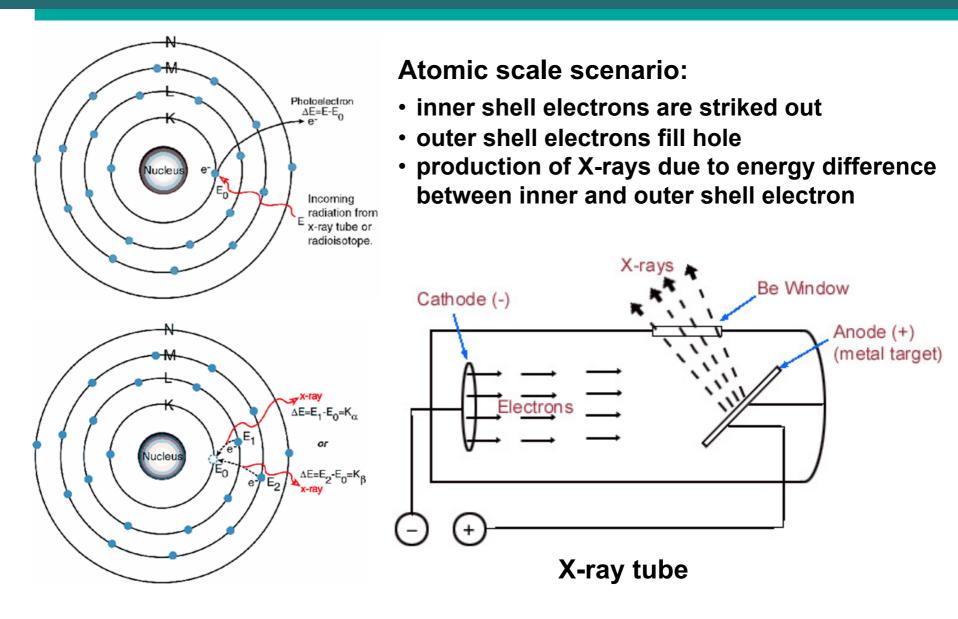
Systematic of extinctions (general reflection conditions): translation

- Integral reflection conditions: unit cell translations (centers)
- Zonal reflection conditions: glide planes
- Serial reflection conditions: screw axes

2. Basic diffraction physics Extinctions: examples



3. Experimental methods Generation of X-rays



3. Determination of 3D structures Practical work- Essentials

- 1. Selection of "good" samples:
- Single crystals: diameter < 0.2 mm
- Homogeneous powders: small crystals of one compound
- 2. Determination of symmetry and unit cell
- 3. Measurement of diffracted intensities (automatic procedure)
- 4. Calculation of possible atomic parameters (structure solution)
- 5. Refinement of the structure model (PC)
- Comparison of experimental and calculated data
- Atomic parameters are optimized until refinement converges
- 6. Interpretation of the resulting refinement results
- R-values, convergence, thermal parameters
- 7. Interpretation of the resulting structure (does it make sense?)
- Interatomic distances, occupancy factors (reasonable values?)
- Ionic compounds: compensation of all charges

3. Determination of 3D structures Results of diffraction studies- Overview

a) Position of the reflections (Bragg's law): Lattice parameters $(1/d)^2 = (1/a)^2 [h^2 + k^2 + l^2]$

b) Intensity of reflections

- Symmetry of the structure: Space group
- Structure (fractional coordinates)
- c) Profile of the reflections
- Crystal size and perfection
 cf. Scherrer formula: Δ(2θ) = λ/Lcosθ
- Indications for structural disorder

