Ligand field theory

General considerations with an example - what happens by dissolving Ti^{3+}-ion in water?

- Ti^{3+} is positively charged, the oxygen in the water molecules is partially negatively charged
\Rightarrow attractive interaction between electrons in the water molecules and Titanium-cation
$\Rightarrow>$ one could expect spherical surrounding of the Ti^{3+} by the water molecules with oxygen pointing in direction of the cation.

but:

- repulsion between outer electrons of the Ti^{3+} and electrons of the oxygen in the water molecules
$=>$ electronic structure of outer electrons (d-orbitals) of the Ti^{3+} is important:
- d-orbitals: three are lying between the axis ($\mathrm{d}_{\mathrm{xy}}, \mathrm{d}_{\mathrm{xz}}, \mathrm{d}_{\mathrm{yz}}$), two in direction of the axis $\left(\mathrm{d}_{\mathrm{x} 2-\mathrm{y} 2}, \mathrm{~d}_{\mathrm{z} 2}\right)$.
$=>$ not every direction is energetically equal
$=>$ no spherical but octahedral or tetrahedral coordination should be energetically favored
- octahedron: all six atoms lie in direction of the axis
\Rightarrow repulsion of ligands and electrons in d-orbitals along the axis
\Rightarrow splitting of the five degenerated energy levels into two different levels, where the lower one contains the three orbitals between the axis and the higher one the other orbitals
- tetrahedron: all four atoms lie between the axis
\Rightarrow repulsion of ligands and electrons in d-orbitals between the axis
$=>$ oppositional splitting in comparison to the octahedral case (three higher and two lower levels)
- difference between the two energy levels is Δ
- the splitting in tetrahedral field is lower than in an octahedral field ($\Delta_{\text {tetr. }}=4 / 9 \Delta_{\text {oct. }}$)

What can be explained with help of this theory?
example I: $\left[\mathrm{Ti}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$, red-violette, configuration of $\mathrm{Ti}^{3+}[\mathrm{Ar}] 3 \mathrm{~d}^{1}$

- in this example Δ is about 243 kJ per $\mathrm{mol}(500 \mathrm{~nm})$
=> absorption at about 500 nm (range of blue-green light)
$=>$ red violette is the contrast colour
example II: $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$, very weak pink, configuration of $\mathrm{Fe}^{3+}[\mathrm{Ar}] 3 \mathrm{~d}^{5}$
- all five d-orbitals are filled half (all with α-spin)
=> excitation should not be possible (forbidden by spin)
=> very weak colour
example III: $\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{3-}$, configuration of $\mathrm{Fe}^{3+}[\mathrm{Ar}] 3 \mathrm{~d}^{5}$
- magnetic measurements show a significantly lower magnetic momentum than for $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$
- magnetic momentum μ can be calculated according to: $\mu_{\text {mag }}=(\mathrm{n}(\mathrm{n}+2))^{0,5} \mu_{\mathrm{B}}$, with $\mathrm{n}=$ number of unpaired electrons, $\mu_{\mathrm{B}}=$ magnetic constant
$=>\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{3-}$ must contain paired electrons (conflict to Hundt's rule)
- in $\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{3-} \Delta$ is bigger then the pairing energy of the spins $=>$ low spin complex
- in $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+} \Delta$ is lower than the pairing energy of the spins $=>$ high spin complex
\Rightarrow splitting (Δ) depends on the ligands (and on the cation what is not further proofed here)
\Rightarrow spectrochemical series

Jahn-Teller-effect:

- stretching of the two atoms in z-direction in an octahedron leads to an advantage for all orbitals with z-components because the repulsion decreases
\Rightarrow splitting of the two energetic levels into four levels at all
=> complexes with unsymmetric occupation of the higher level d-orbitals often show this effect, for example $\mathrm{Cr}^{2+}\left(\mathrm{d}^{4}\right.$ high spin), Mn^{3+} (d^{4} high spin), $\mathrm{Ag}^{2+}\left(\mathrm{d}^{9}\right)$ and $\mathrm{Co}^{2+}\left(\mathrm{d}^{7}\right.$ low spin).

