Ligand field theory

General considerations with an example - what happens by dissolving Ti³⁺-ion in water?

Ti³⁺ is positively charged, the oxygen in the water molecules is partially negatively charged
=> attractive interaction between electrons in the water molecules and Titanium-cation
=> one could expect spherical surrounding of the Ti³⁺ by the water molecules with oxygen pointing in direction of the cation.

but:

- repulsion between outer electrons of the Ti^{3+} and electrons of the oxygen in the water molecules => electronic structure of outer electrons (d-orbitals) of the Ti^{3+} is important:

- d-orbitals: three are lying between the axis (d_{xy}, d_{xz}, d_{yz}) , two in direction of the axis (d_{x2-y2}, d_{z2}) . => not every direction is energetically equal

=> no spherical but octahedral or tetrahedral coordination should be energetically favored

- octahedron: all six atoms lie in direction of the axis
- => repulsion of ligands and electrons in d-orbitals along the axis

=> splitting of the five degenerated energy levels into two different levels, where the lower one contains the three orbitals between the axis and the higher one the other orbitals

- tetrahedron: all four atoms lie between the axis

=> repulsion of ligands and electrons in d-orbitals between the axis

=> oppositional splitting in comparison to the octahedral case (three higher and two lower levels)

- difference between the two energy levels is Δ

- the splitting in tetrahedral field is lower than in an octahedral field ($\Delta_{\text{tetr.}} = 4/9 \Delta_{\text{oct.}}$)

What can be explained with help of this theory?

example I: $[Ti(H_2O)_6]^{3+}$, red-violette, configuration of Ti^{3+} [Ar]3d¹

- in this example Δ is about 243 kJ per mol (500 nm)

=> absorption at about 500 nm (range of blue-green light)

=> red violette is the contrast colour

example II: [Fe(H₂O)₆]³⁺, very weak pink, configuration of Fe³⁺ [Ar]3d⁵

- all five d-orbitals are filled half (all with α -spin)

=> excitation should not be possible (forbidden by spin)

=> very weak colour

example III: $[Fe(CN)_6]^{3-}$, configuration of Fe^{3+} [Ar]3d⁵

- magnetic measurements show a significantly lower magnetic momentum than for $[Fe(H_2O)_6]^{3+}$
- magnetic momentum μ can be calculated according to: $\mu_{mag} = (n(n+2))^{0.5} \mu_B$, with n = number of unpaired electrons, μ_B = magnetic constant

=> [Fe(CN)₆]³ must contain paired electrons (conflict to Hundt's rule)

- in $[Fe(CN)_6]^3 \Delta$ is bigger then the pairing energy of the spins => low spin complex
- in $[Fe(H_2O)_6]^{3+}\Delta$ is lower than the pairing energy of the spins => high spin complex
- => splitting (Δ) depends on the ligands (and on the cation what is not further proofed here)

=> spectrochemical series

Jahn-Teller-effect:

- stretching of the two atoms in z-direction in an octahedron leads to an advantage for all orbitals with z-components because the repulsion decreases
- => splitting of the two energetic levels into four levels at all
- => complexes with unsymmetric occupation of the higher level d-orbitals often show this effect, for example Cr^{2+} (d⁴ high spin), Mn^{3+} (d⁴ high spin), Ag^{2+} (d⁹) and Co^{2+} (d⁷ low spin).