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Abstract

In this article a solid-state NMR methods for the determination of internuclear dipole-dipole

couplings between homonuclear spin-1/2 nuclei are presented. They are suitable for relatively

dense dipolar networks which are still dominated by 2-spin interactions. C-/R-symmetry the-

ory is applied to create a double-quantum average Hamiltonian using phase-modulated radio-

frequency irradiation and magic-angle sample-rotation. Symmetry derived pulse sequences

with improved compensation against chemical shift anisotropies were found assuming a small

isotropic chemical shift difference and using numerical calculations of the spin dynamics. More-

over it is shown that a constant time procedure can be used to acquire reliable double-quantum

build-up curves even in systems in which damping obscures oscillations in a symmetric build-up

curve. This technique is demonstrated on four crystalline model compounds with 31P and 13C

spin systems typical for inorganic and biological applications. Comparison to crystal structure

data indicates that the distances derived this way from 31P and 13C double-quantum NMR carry

only small systematic errors caused for example by anisotropic J-coupling, dipolar contributions

from adjacent spins and relaxation.

keywords: NMR, solid-state, homonuclear, dipolar, distance
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1 Introduction

Solid-state nuclear magnetic resonance (NMR) may be used as a tool for obtaining structural infor-

mation in complex disordered molecular solids. Structural information may come in the form of

internuclear distances, internuclear angles and, owing to the quantitative nature of NMR, in the form

of relative proportions of chemical groups [1]. Many applications to inorganic and organic matter

require magic angle spinning (MAS) in order to obtain maximum signal intensity and spectral res-

olution. Under these conditions structural information is obtained by applying radio frequency (rf)

pulses in order to selectively recouple parts of the spin Hamiltonian which otherwise are averaged

by the sample rotation. The rf recoupling schemes may be incorporated into multidimensional pulse

sequences leading to powerful experiments used for resonance assignment in addition to the already

mentioned applications [2–5].

Focussing on techniques which allow to elucidate distance type information there is a wide range

of different experimental approaches [3] all making use of the fundamental relationship between the

magnetic dipole-dipole interaction and the internuclear distance. This dipolar through-space inter-

action is related to the dipolar through-bond interaction, the J-coupling, which cannot be used for

distance determination by itself. In homonuclear spin-1/2 systems one may classify experiments by

the type of spin-operator terms which occur in their average Hamiltonians. For example, average

Hamiltonians for RFDR [6] and rotational resonance [7,8] consist of zero-quantum terms, Hamilto-

nians for HORROR [9], BABA [10], C7 [11] and R14 [12] consist of double-quantum terms, while

for RIL [13], DRAMA [14] and DRAWS [15] average Hamiltonian have contributions from both

types. From the type of average Hamiltonian it is possible to derive selection rules which govern

the excitation of multispin coherences [16]. Hence, double-quantum average Hamiltonians may be

used to efficiently excite double-quantum (DQ) coherences, while zero-quantum average Hamilto-

nians may be used to excite multi-spin zero-quantum coherences. For spin systems which can be

approximated as spin pairs through-space DQ techniques offer advantages as they generally allow

the investigation of the coupling of isochronous spin pairs. C7 and R14 are examples taken from the

classes of C- [11] and R-sequences [12] developed by Levitt, Nielsen and coworkers, and are dif-

ferent from the other DQ-sequences in the sense that they are dependent on two Euler angles only.
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The lower orientation dependence of the average Hamiltonian leads to higher efficiency of the DQ

filtered signal.

One common way of determining distance type information using spin-1/2 DQ NMR is based

on the acquisition of DQ filtered spectra as a function of the DQ mixing time1. This technique has

found application in 13C and 31P NMR of inorganic [17–19] and biochemical materials [20–22].

In biochemistry owing to the possibility of selective 13C labeling prominent oscillations have been

found, which result in good estimates of distances by numerical simulation of the spin dynamics.

The accuracy of distances stemming from these DQ-experiments depends on the effective sup-

pression of contributions to the spin Hamiltonian other than the required homonuclear dipolar cou-

pling term. In many cases this means decoupling of protons and suppression of the chemical shift

interaction. The latter may in principle be achieved by using a low magnetic field and thus scaling

down the magnetic field dependent chemical shift interaction. In reality this is often not possible be-

cause of losses in resolution, sensitivity or simply because a lower field is not available. If chemical

shift terms are not effectively suppressed experimental curves may become sensitive not only to the

dipolar coupling constant but also to the chemical shift tensors of the two spins and their relative

orientation to the direct dipolar coupling. This problem is in fact more serious in DQ 31P-NMR of

inorganic solids than in DQ 13C-NMR of biological samples because of the bigger magnitude of a

typical 31P chemical shift anisotropy.

Apart from these complications care has to be taken when further spins come into play or when

relaxation is causing a rapid decline of DQ build-up curves. The latter is often true for symmetric

[17] 31P DQ build-up curves in inorganic phosphates, thus reducing the available 31P-31P distance

information to a qualitative level. In this context it is interesting to note that this can in part be

compensated for by the use of constant-time experiments, as was demonstrated on DQ experiments

which were used to determine the relative orientation of two chemical shift tensors [23, 24] and for

distance determination using a DQ dephasing technique [24].

In this article I present a new approach to measure dipolar coupling constants in systems with

relatively big chemical shift anisotropies, using build-up time dependent DQ spectroscopy. The

sequences presented here are suitable for systems with relatively dense dipolar-coupling networks
1The plot of the intensity of the DQ filtered signal as a function of the DQ mixing time is termed “DQ build-up

curve” in this article.
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of spin-1/2 nuclei. Primary target systems for this work are the 31P-31P networks of inorganic

phosphates but the results can also be transfered to biochemical and organic materials probing 13C-

13C dipolar couplings. In phosphates the range of the 31P isotropic chemical shift is smaller than the

13C chemical shift range found in aminoacids, at the same time the anisotropy of the chemical shift

tensor can be bigger. Thus from the pool of R- and C-sequences [22,25] symmetries are sought which

lead to better chemical shift compensation. Their tolerance towards experimental imperfections

i.e. amplitude and phase errors is studied by numerical simulation. In addition the influence of

amplitude and phase transients is analyzed theoretically according to a recently published model

[22] and compared with experimental data. DQ build-up curves are recorded to determine dipolar

couplings, with a DQ constant-time setup. In this way the influence of relaxation is minimized

which simplifies data analysis. The proposed experiments are demonstrated on four selected model

compounds featuring a range of 31P − 31P spin-pair distances of up to 3.56Å.

2 Experimental Section

2.1 Sample Preparation and Characterization

Four model samples were chosen, namely crystalline Ag7P3S11 [26], Na4P2O7 [27], Cd2P2S6 [28]

and glycine [29]. The 31P containing samples represent three different types of 31P spin pairs, with

respect to the dipolar coupling and the internuclear PP-distance (Table 3). In order to demonstrate

that the experiments presented here can also be used in organic and biological materials glycine is

used as another test case. From a structural point of view Ag7P3S11, Na4P2O7 and Cd2P2S6 have 3,

2 and 1 crystallographically independent positions. Ag7P3S11 is built from a S3P −S −PS4−
3 -group

with two different phosphorus atoms with an isotropic chemical shift of 101.4ppm/92.0ppm and a

PS3−
4 -group with an isotropic chemical shift of 103.2ppm while Na4P2O7 features a pyrophosphate

group which according to X-ray data contains two crystallographically distinct phosphorus positions.

Cd2P2S6 is built from hexathiohypodiphosphate units P2S4−
6 , the two P-atoms are linked by an

inversion center in the middle of the PP-bond.

The crystalline Ag7P3S11 is identical with the sample used in [17]. 99%-1,2-13C2−glycine

bought from Eurisotop and crystalline Na4P2O7 (technical grade, 99% purity) from Alfa Aesar were
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used without further purification. Crystalline Cd2P2S6 was synthesized from the elements (tech-

nical grade, 99% purity) by heating a stoichiometric mixture in a quartz ampule to a temperature

of ≈ 750 ◦C for 1 week. The product was identified as crystalline Cd2P2S6 by means of EDX and

powder X-ray diffraction. All samples were also identified from the isotropic chemical shifts from

either 31P or 13C solid-state NMR spectra and comparison to literature values [30–33].

2.2 Solid-State NMR

The 13C and 31P NMR experiments were carried out on a Varian Infinity+ NMR spectrometer

equipped with a commercial 2.5 mm double-resonance MAS-NMR probe. The magnetic field

strength was 9.4 T corresponding to resonance frequencies of ν
(31P

)
= 161.42MHz and ν

(13C
)
=

100.29MHz. Samples were rotated within zirconia spinners. By means of appropriate spacers, the

sample was confined to the middle 1/3 of the rotor volume. A commercially available pneumatic

control unit was used to limit MAS frequency variations to a 2 Hz interval for the duration of the

experiment.

In order to obtain an optimum signal to noise ratio in the 31P NMR experiments spin-lattice

relaxation times T1 were measured using saturation-recovery experiments [34]. The saturation was

realized with a pulse comb of π/2-pulses of typically 20− 40 pulses with an intermediate delay of

20−50ms. Results are given in Table 1. Saturation combs are also used in all 31P DQ experiments

in order to suppress intersequence echos [17]. For a constant total experiment-time repetition rates

of approximately the T1 value will theoretically result in an optimum signal to noise ratio. Only in

the case of Cd2P2S6 it was not possible to follow this rule because of the long T1 values observed.

Hence a minimum number of scans was used in combination with a long repetition rate (typically

128s).

For DQ experiments the probe was tuned by minimizing the reflection of high-power pulses. C-

sequences applied a rf nutation frequency of 70kHz, readout pulses a nutation frequency of 140kHz

on the phosphorus samples under investigation. The pulse phase resolution of the spectrometer is

0.25◦.

The NMR pulse sequence used for 31P-31P distance measurements is shown in Fig. 1. Only a

single rf channel is involved. All pulse blocks shown involve irradiation at the 31P NMR resonance
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frequency.

DQ build-up curves were acquired using the pulse sequence sketched out in Fig. 1, which

uses a C-pulse sequence of duration τDQ1 after the relaxation delay to convert z-magnetization

into DQ coherence. A second C-block of duration τDQ2 is used to reconvert the DQ coherence

into z-magnetization which is read out via a final pulse with 90◦ flip angle. The C-blocks are

incremented only in full C-cycles. The C-cycles are constructed using the C73
1 symmetry, a C-

element 900−360180 −2700 and 2-step super cycle, such that the original
[
C73

1
]
-block is alternated

with a 180◦-phase shifted block
[
C73

1
]
+180◦ . Explicitly the pulse flip angles and phases (notation:

f lipanglephase) for
[
C73

1
]

are given by:

C73
1= { 90.00.0, 360.0180.0, 270.00.0,

90.0154.29, 360.0334.29, 270.0154.29,

90.0308.57, 360.0128.57, 270.0308.57,

90.0102.86, 360.0282.86, 270.0102.86,

90.0257.14, 360.077.14, 270.0257.14,

90.051.43, 360.0231.43, 270.051.43,

90.0205.71, 360.025.71, 270.0205.71}

The C73
1-sequence with the C-element 900 − 360180 − 2700 is rotor synchronized and needs an

irradiation with a nutation frequency being 14 times the spinning frequency.

Coherence pathway selection was done phase cycling the pulse phases only, thus keeping the

receiver phase constant. This was done using a cogwheel phase cycle [35] of 12 steps with a differ-

ence in winding numbers between the excitation and reconversion block ∆ν12 = 3 and between the

reconversion block and read pulse ∆ν23 = 1, which amounts to a Cog12(2,5,6;0). Thus the pulse

phase increments φ in the i-th experiment for DQ excitation, reconversion and the read pulse block

are:

i 1 2 3 4 5 6 7 8 9 10 11 12

φi
exc. 0.0 60.0 120.0 180.0 240.0 300.0 0.0 60.0 120.0 180.0 240.0 300.0

φi
recon. 0.0 150.0 300.0 90.0 240.0 30.0 180.0 330.0 120.0 270.0 60.0 210.0

φi
read 0.0 180.0 0.0 180.0 0.0 180.0 0.0 180.0 0.0 180.0 0.0 180.0

The phase cycle selects the coherence transfer pathways 0 →+2 → 0 →−1 and 0 →−2 → 0 →

−1 as indicated in Fig. 1, neglecting all coherence pathways which involve coherence orders |p|> 2.
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An additional 4 step phase cycle realizes DC offset and quadrature image compensation.

Experiments on glycine were done using ramped cross-polarization [36] (contact time 1ms) and

continuous wave decoupling employing a rf field strength of 100kHz on the proton channel. DQ

experiments for glycine use cross polarization, followed by a π/2 pulse flipping magnetization back

into the z-direction, then DQ-coherences are excited using POST C7, reconverted and read out by

a final π/2 pulse. 1H continuous wave decoupling was applied throughout acquisition and DQ

excitation and reconversion. For a pulse sequence sketch see [37, figure 1].

2.3 NMR Simulations

The simulations of the spin-dynamics were done using the SIMPSON NMR interpreter [38] pub-

lished by Nielsen and co-workers. Powder averages were chosen according to the Zaremba-Conroy-

Wolfsberg scheme [39] with a number of orientations of 1760 (88 α-, β-angle-pairs x 20 γ-angles) or

better. Only exception are the multispin simulations in Fig. 8 with a powder average of 160 orienta-

tions (20x8). The integration time step for the DQ simulations was chosen as 1/10th of the shortest

rf-unit in the sequence.

Simulations of the chemical shift parameters were done by minimizing the squared difference

between experiment and simulation using the MINUIT routines [40] in SIMPSON. The fitting was

set up such that it uses an alternative description of the chemical shift parameters δiso, δaniso and

η with the parameters (i) isotropic chemical shift δiso, (ii) span δspan and (iii) gravity grav defined

from the principal axis values δ11 ≥ δ22 ≥ δ33 by δiso = 1
3(δ11 + δ22 + δ33), δspan = δ11 − δ33 and

grav = δ22−δ33
δspan

. In this description the fitting process is more likely to converge for η values around

1 than in the description which is used in SIMPSON by default.

The root-mean-square deviation r is given for all chemical shift parameters and dipolar coupling

constants νdip which were obtained from fitting experimental curves and spectra. The parameter is

a measure for the deviation between experimental and simulated data and defined as follows:

r =

√√√√√√√√√

points

∑
i

(yi (exp.)− yi (sim.))2

points

∑
i

yi (exp.)2

(1)
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DQ efficiencies given are normalized with respect to the intensity of a one-pulse experiment

for 31P and to the intensity from a cross-polarization experiment for 13C under otherwise identical

conditions.

Selection rules and the calculation of scaling factors for R- and C-sequences are implemented

in a Mathematica [41] script by Levitt and Brinkmann, which is available in the internet (see

http://www.mhl.soton.ac.uk) and has been used to determine and study promising pulse sequence

candidates (vide infra).

Chemical shift parameters are needed to estimate the influence of the chemical shift on the

dipolar-recoupling schemes. Chemical shifts δ in this contribution are given in ppm on a deshielding

scale [42]. Parameters for glycine were taken from the literature [29, 43]. For the 31P contain-

ing samples chemical shift parameters were determined experimentally. While slow spinning MAS

spectra for Na4P2O7 and Ag7P3S11 at spinning speeds of νr = 2kHz and 1kHz, respectively, can be

fitted using a single-spin approximation disregarding the magnetic dipole-dipole interaction, in the

case of Cd2P2S6 simulation has to take into account also the dipolar interaction. Following chemical

intuition the main axis of the chemical shift tensors δzz was assumed to be oriented along the inter-

nuclear PP-axis which is improving the fit between experiment and simulation significantly. Note

that at very high (νr = 23kHz) and very low spinning speeds (νr = 2kHz) the previously reported

splitting of the 31P resonance of Na4P2O7 cannot be resolved, while in an intermediate spinning

regime (νr = 5kHz) a splitting of the 31P-resonance was evident (spectra not shown) in full agree-

ment with literature spectra [31,32]. This behavior is probably caused by a complicated relationship

between sample rotation frequency and the cross terms of chemical shift and the dipole-dipole inter-

action. The same behavior was also found and analyzed for a similar system, Na4P2O7 ·10H2O [44].

From the high speed MAS spectra it may be concluded that phosphorus sites while being crystal-

lographically different have the same isotropic chemical shift values within experimental error. For

this reason only one set of parameters is given. Definitions of the chemical shift parameters, i.e.

isotropic chemical shift δiso, the anisotropic chemical shift δaniso and the asymmetry parameter η

can be found in the literature [38].
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3 Searching for an Optimized DQ-Sequence

3.1 Pulse Sequences with R- and C-Symmetry

DQ excitation sequences can elegantly be obtained by searching the class of C- and R- pulse se-

quences which have been described, developed and analyzed using the symmetry theory by Nielsen,

Levitt and coworkers [11,12]. For this reason only short descriptions of these pulse sequence classes

will be given here, more details may be found in the original literature [11,12] and in a recent review

by Levitt [45].

Symmetry theory lays a framework for the prediction of effective Hamiltonians for sequences

from the class of rotor synchronized C- and R-sequences. Both C- and R- pulse sequences are

uniquely specified by the super cycling scheme, by the three integer symmetry numbers N,n and ν,

and by the design of the C- or R-element, which in principle can be any composite pulse inducing a

flip angle 2π or π around the x-axis in the rotating frame, respectively. Effective Hamiltonians can

be predicted for complete C- and R-cycles which are formed by integer multiples of N basic C- or

R-elements which span n complete rotor periods.

The construction of the complete cycle for CNν
n - and RNν

n -pulse sequences from the basic el-

ements is different. Consecutive Ci-elements are related by a phase increment φ which has to be

added to all pulse phases of the composite pulse forming the C-element. This phase increment φ in

radians can be calculated from the symmetry numbers N and ν: φ = 2π ν
N

Complete R-cycles are formed by N/2 pairs of RR’ elements where R’ is the “phase inverted”

element. Thus the number of R-elements N must be even. The phases in the R-element can be

calculated from the composite pulse phases by adding an angle φ = π ν
N . The element R’ is obtained

by inverting the signs of all phases in the element R.

NMR interactions are often different in their rotational properties [45, Tables 1 and 2]. Based

on these properties prediction of the first order average Hamiltonian can be made by simple selec-

tion rules which were derived on the basis of average Hamiltonian theory. Terms of the average

Hamiltonian H̄ (1)
lmλµ which get suppressed in the average Hamiltonian of C- or R-cycles fulfill simple

inequalities.
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C− class R− class

mn−µν 6= NZ mn−µν 6= N
2 Zλ

(2)

Here l, m, λ and µ are the rotational components of the interactions; l and m are space rank and

component; λ and µ are spin rank and component; Z is any integer number, Zλis also integer but

depending on the parity of the spin rank it can become any even integer if λ is even and any odd

integer if λ is odd. Note that these selection rules are independent of the composite pulse used for

the C- or R-element. Thus symmetries can often be found which suppress all interactions apart from

the interaction terms in which the spectroscopist is interested in.

While these selection rules provide information on which terms are symmetry forbidden, infor-

mation on the magnitude of the terms is supplied by the scaling factor κ. The scaling factor is a

complex number and its magnitude is smaller or equal to one. It can be calculated for any H̄ (1)
lmλµ if

the composite and the symmetry of the pulse sequence are given. Thus it is possible to suppress fur-

ther unwanted terms by choosing an appropriate composite pulse resulting in a zero scaling factor.

As is shown in detail in the original literature [46] the scaling factor is calculated in the following

way,

(i) for C-sequences:

κlmλµ = dl
m0 (βRL)Kmλµ (3)

(ii) for R-sequences:

κlmλµ = dl
m0 (βRL)exp

{
−iµ

πν
N

}
Kmλµ (4)

where dl
m0 () is the reduced Wigner rotation matrix element and βRL is the Euler angle between

the sample rotation axis and magnetic field. In both cases the factors Kmλµ are defined with respect

to the basic element.

Kmλµ = τ−1
� τ

0
dt0dλ

µ0
(
−β0)exp

{
i
(
µγ0 +mωrt0)} (5)

The symbols t0, β0, and γ0 refer to time points and rf Euler angles within the basic element. The
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scaling factor κ may be calculated from these equations, using a Mathematica script implemented

by Andreas Brinkmann.

The magnitude of the scaling factor may now serve as a property which needs to be maximized

for optimum performance. The number of composite pulses which led to improved performance of

R- and C-sequences so far is limited. Examples which gave promising results in homonuclear DQ

spectroscopy are C= 3600, C= 3600 −360180, C= 900 −360180 −2700, R= 1800, R= 900 −270180

and R= 600 −300180 −600.

While the choice of composite pulse and symmetry helps to control the short term evolution

under the sequence, super cycling may be used to improve long term evolution. Without super

cycling the C-/R-cycle is usually repeated several times as specified above. With super cycling

modified versions of the basic pulse cycle are alternated with the original cycle. In the context of

DQ NMR super cycling with a simple 2-step super cycle has been found advantageous [47]: Single-

quantum-terms will be suppressed by repeating the full R- or C-cycle phase shifted by π.

A desirable feature for many pulse sequences is a reduced dependence on molecule orientation.

Molecule orientations with respect to the rotor frame are usually given by three Euler angles. In case

the pulse sequence is selecting a single term only the magnitude of the Hamiltonian will depend on

two Euler angles. This feature is called γ-encoding [45]. If several terms are selected γ-encoding

cannot be maintained in general. However under special conditions it is possible that pairs of terms

remain mutually identical because a sign change in the spin component is compensated for by a

sign change in the space component, so that the average Hamiltonian is still γ-encoded [45]. In

homonuclear DQ NMR symmetry based γ-encoded pulse sequences have a theoretical DQ-efficiency

of about 20% points higher than non γ-encoded. While γ-encoding is a desirable feature in terms

of efficiency, there are certain techniques which use the higher orientational dependence for good

[48, 49]. In addition, it should be noted γ-encoding also depends on the choice of the super cycling

scheme and special measures can be necessary to preserve γ-encoding as in the case of SC14 [50].

3.2 Suppression of the Chemical Shift

In order to generate a pure dipolar DQ average Hamiltonian, it is necessary to suppress all competing

terms including the chemical shift. Since the chemical shift contribution is field dependent, it can
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become a serious problem under high-field conditions. On the other hand it may not be possible to

change to a lower field for reasons of resolution, signal to noise or simply because a lower field is

not available. Thus the design of DQ sequences with improved chemical shift compensation is of

considerable interest.

Comparing the ranges for 31P isotropic chemical shifts and chemical shift anisotropies of phos-

phates with the ranges for 13C of amino acids it becomes obvious that the spread in isotropic chemi-

cal shift in phosphates is smaller while the spread in chemical shift anisotropies is often bigger than

in amino acids. The idea is to trade compensation against isotropic chemical shift differences for

compensation against chemical shift anisotropies.

The strategy followed to this end follows closely the strategy used in ref. [51]. First all γ-encoded

C- and R-symmetries were determined using the selection rules given in equation 2 (C-sequences

within N ≤ 20, n ≤ 10, 0 ≤ ν ≤ N
2 and R-sequences within N ≤ 40, n ≤ 10, 0 ≤ ν ≤ N) which

are suitable for dipolar DQ recoupling under MAS. The pulse sequences were required to sup-

press all terms with quantum numbers (l,m,λ,µ) not being (2,1,2,2), (2,−1,2,2), (2,1,2,−2),

(2,−1,2,−2), (2,2,2,2), (2,−2,2,2), (2,2,2,−2), (2,−2,2,−2) (dipolar DQ terms), either by the

C-/R-selection rules, by magic angle spinning or by coherence order selection via phase cycling. In

total 109+135 = 244 pulse sequence symmetries were found.

In combination with the composite pulses C= 3600, C= 900 −360180 −2700, R= 1800, R= 900 −270180

and R= 600 −300180 −600 and super cycling by repeating a 180◦-phase shifted version in total 1194

pulse sequences can be constructed. Their scaling factors were calculated and all combinations with

a low scaling factor, i.e. |κ| < 0.13 have been discarded. Low scaling factors are unsatisfactory

because relaxation will have an increased influence. Note that numerical calculations for different

symmetries (Fig. 2) indicate that rf demand νr f
νr

and scaling factor follow a monotonic relationship if

the C-/R-element and the type of recoupled DQ-term are kept constant. Under these circumstances

high scaling factors will lead to a high rf demand.

The first order average Hamiltonian for the terms (l,m,λ,µ) = (2,−1,2,2) and (2,1,2,−2) has

the form:
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H̄ (1)
lmλµ = ∑

j<k

(
ω jkT jk

2−2 +ω∗
jkT jk

22

)
(6)

where T jk
2±2 are second rank spin operators for the interaction between spins j and k, the details

of the recoupled interaction between spins j and k being given in the literature [22]. The factor ω jk

is proportional to the product of the complex scaling factor κ and the dipolar coupling constant

νdip =−
(
µ0/8π2)γ2~/d3 (7)

where d is the internuclear distance and γ is the magnetogyric ratio. Explicitly ω jk it can be

written as

ω jk =−3πνdipκ2−122 sin(2βPR)ei(α0
RL−ωrt0+γPR) (8)

Here the Euler angles αPR,βPR,γPR describe a the rotation from principle axis frame of the

homonuclear dipolar interaction to the rotor frame and Euler angles αRL,βRL,γRL describe a rota-

tion from the rotor to the laboratory frame.

In order to study and compare the chemical shift compensation it is necessary to define a standard

compound. Here the 31P parameters of the pyrophosphate group of crystalline Na4P2O7 (Table1)

were taken and DQ build-up curves at different magnetic fields for all candidate sequences were

calculated, using a constant maximum excitation time of 10ms and constant rf power νr f = 70kHz.

The pulse sequences are constructed in correspondence to the sequence in Fig. 1 using the appropri-

ate pulse sequence symmetry and element. DQ build-up curves were obtained by equally increasing

the conversion times τDQ1 and τDQ2 and plotting DQ filtered intensity against the DQ excitation

time. At this point all pulse sequences were disregarded whose complete C-/R-cycle is longer than

500µs because the oscillations of their DQ build-up curves will be poorly sampled2. The ability of

chemical shift compensation can be judged from the difference between an ideal curve, i.e. chemical

shift is switched off, and the full simulation including the chemical shift. Comparison of different

pulse sequences may be done using the root mean squared difference between ideal and full simula-

2Sampling using incomplete C-/R-cycles might even work in these cases. On the other hand numerical calculations
indicate that incomplete cycles have inferior chemical shift anisotropy compensation.
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tion rmsDQ. Note that the root mean squared difference rmsDQ can take values bigger than 1 if DQ

curves show negative values. The root mean squared difference for low fields will stay close to zero

indicating that the sequence is compensated against the chemical shift at this field. For higher fields

compensation will be lost which will be reflected in a root mean squared difference rmsDQ > 0.

For even higher fields the root mean squared difference rmsDQ will be close to 1 indicating that the

filtered DQ-intensity is close to zero. Because of this general trend which was found for all pulse

sequence symmetries under study, it is reasonable to define a magnetic field Bmax up to which a

sequence is compensated towards the chemical shift. The maximum field Bmax here is defined as the

highest possible field for which a root mean square deviation is always below 0.1. In other words

the higher the Bmax the better the chemical shift compensation. The best 32 C- and R-candidate

sequences are tabulated in Table 2.

Comparing the chemical shift compensation with previously used C- and R-sequences, it be-

comes clear that the focus on samples with small difference in isotropic chemical shifts, has lead to

different C- and R-solutions while symmetries which do well with bigger isotropic chemical shift

separation like C71
2 or R146

2 have low ranking in this context. A common feature of the high ranking

sequences in Table 2 is their huge rf demand νr f
νr

resulting in low spinning speeds. In fact some of

these sequences have an rf-demand higher than 20 and might therefore not be suitable for real world

applications. In Fig. 3 curves of the field dependent root mean square deviations are given for the

symmetries C73
1, C94

1 which will become the first choice in this article in comparsion with success-

full known symmetries as C71
2 or R146

2. For the latter which are not listed in Table 2 maximum fields

Bmax of 5.1T and 5.7T can be reached, respectively. In the case of 31P DQ-NMR phosphate studies

the gain in chemical shift compensation is obvious, the same should also hold for 13C DQ-NMR as

long as the isotropic chemical shift difference is low. From a descriptive point of view it should be

noted that neither the scaling factor κ, the basic C-/R-element nor the type of recoupled Hamiltonian

term show a simple correlation with the maximum magnetic field Bmax.

So far only the magnitude of the chemical shift was considered and it was assumed that the DQ-

curves were acquired with the transmitter being set on resonance. In practice this will not always

be possible especially if more than one pair of resonances is present. However simulations and

experiments (results not shown) prove that the sequences C73
1 and C94

1 are still well compensated
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against a simple transmitter offset over a range of at least 500ppm as long as the isotropic chemical

shift difference remains small.

3.3 Experimental Imperfections

The above discussion did not include compensation against experimental errors like deviations in

rf-amplitude, phase errors and phase- and amplitude-transients. In fact these errors can be quite

substantial and need to be considered.

Constant Errors in Rf-Amplitude

Constant errors in the rf-amplitude applied to the DQ sequence are given by eamp which is the

relative deviation to the ideal field. For example an eamp of −0.1 indicates that instead of a rf field

of 70kHz, which should have been applied ideally, a rf field of (70−0.1 ·70) kHz= 63kHz was

applied. Experimentally it is found that DQ-sequences have to be compensated against errors of at

least 5% in magnitude. In order to estimate the compensation of the candidate sequences given in

Table 2, DQ curves at a constant field of 9.4T with varying amplitude error were calculated. The

deviation from an ideal curve (no chemical shift, no amplitude error) was again evaluated for all

candidate sequences (plots not shown). In accordance with previous work [37] it turns out that the

amplitude compensation is significantly influenced by the choice of the basic element. Especially the

R- and C-elements R=900−270180, R=600−300180−600 and C=900−360180−2700 give sufficient

compensation against amplitude errors. Unfortunately this means that many of the high ranking R-

symmetries in Table 2 will be sensitive to amplitude errors. Potential candidate pulse sequences

which still need to be considered are: C73
1, C94

1 and R3014
2 , R209

2. Their simulated reponse to

amplitude errors is displayed in Fig. 4.

Round off Errors in RF-Phase

Recently it was noted that γ-encoded R-sequences are sensitive to errors in pulse phase especially

if long trains of R-cycles are necessary [22]. In the present case the phase resolution of the spec-

trometer used is 0.25◦. Simulations with variable round off error indicate that while γ-encoded C-

sequences are insensitive to round off errors up to several degrees magnitude, γ-encoded R-sequences
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will suffer from errors as small as 0.05◦ at long DQ-excitation times. For this reason only the C-

sequences will further be considered. Nevertheless it should be possible to use R-sequences for

strong dipolar couplings that result in short DQ-excitation times or on spectrometers which offer

higher phase resolution.

Amplitude and Phase Transients

In the simulations above only a relatively weak rf nutation frequency 70kHz was assumed. In case

of single channel experiments focused on 31P-systems one could envisage much better performance

at higher nutation frequencies. In fact commercial probes are available which are specified up to

160kHz. The reason for deliberately choosing a lower rf-field is that the effect of amplitude and

phase transients with the above indicated C- and R-elements will spoil DQ-efficiency. Simple exper-

imental tests such as increasing the spinning speed of POST C7 from 10kHz to 20kHz and rf am-

plitude from 70kHz to 140kHz while keeping conversion times constant have congruously shown

a massive decrease in DQ-excitation efficiency because the building blocks in the pulse sequence

get shorter and the influence of phase and amplitude transients bigger. In principle special probes

with a switchable Q-factor would be an ideal solution of this problem. While a high Q-factor on the

one hand has the advantage of enhanced signal reception, a low Q-factor during the pulse sequence

could diminish the destructive influence of phase and amplitude transients.

A more quantitative way of estimating transient influence on the DQ-sequences was proposed in

reference [22] for the simple case of a change in pulse phase at time point t ′. Using a pick up coil

amplitude and phase transients can be monitored with a digital scope (Fig. 5). From these data one

can obtain two parameters - the transient decay rate constant λtran and quadrature transient build-up

rate constant λQ - which describe the transient characteristics. The transient parameters are defined

(taken from [22]) for a single phase change φ1 → φ2 of two consecutive pulses by:

Br f (t) = B0
r f (φ2)+Btran

r f (t,φ1)−Btran
r f (t,φ2) t > t ′ (9)

Here B0
r f is the ideal field after the junction of the pulses:
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B0
r f (φ2) = Br f (cosφ2 ex + sinφ2 ey) (10)

While the transient contributions3 have the following form:

Btran
r f (t,φ) = Bin−phase

r f (t,φ)+Bquad
r f (t,φ) (11)

with

Bin−phase
r f (t,φ) = Br f e−λtran(t−t ′) (cosφex + sinφey) (12)

Bquad
r f (t,φ) = Br f e−λtran(t−t ′)λQ

(
t − t ′

)
(−sinφex + cosφey) (13)

Here ex and ey are the rotating frame axes. From the transient parameters λtran and λQ the

magnitude A and phase ϕ of Br f (t) can be calculated, which in turn is used to calculate the Br f in

the laboratory frame. The induced voltage U is related to d
dt Br f in the laboratory frame. The induced

voltage can be approximated as U ∝ Asin(ωt +ϕ) in this case because the oscillations at the carrier

frequency ω dominate over d
dt A and d

dt ϕ. A fitting procedure of the observed voltage from the pickup

coil resulted in λtran = (4.00±0.05)106s−1 and λQ = (2.58±0.06)106s−1.

Now that the transient behavior is characterized, the transient model can be used to calculate the

influence on DQ build-up curves again via the magnitude and phase of Br f (t) at various time points.

These calculations are done assuming a piecewise constant pulse amplitude and phase. Converg-

ing results were obtained with an even stepwidth of ≈ 30ns. Following the experimental procedure

of tuning the rf amplitude to maximum DQ efficiency, curves for the dependence of DQ-efficiency

on a constant error in rf amplitude were calculated for C71
2 (Fig. 6). Including transients into the

simulations results in a splitting of the optimum rf amplitude, in qualitative agreement with exper-

imental evidence (Fig. 6) . The splitting can also be observed for the pulse sequence symmetries

C73
1 and C94

1 using 900 − 360180 − 2700 as C-element. Moreover the amplitude condition becomes

narrower, while optimum DQ-efficiency is dropping. These and further simulations underline that

3Note: The formula for the quadrature contribution in the original paper contains a typographic error which has been
corrected following a private communication with the authors.
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with the C-elements C= 3600 and 900 −360180 −2700 the maximum rf power is limited by pulse

and phase transients and not by the maximum rf pulse power which can in principle be applied to

the probe. However differences between experiment and transient simulations for long conversion

times remain, which could be due to the unknown relative orientations of chemical shift and dipolar

interaction, relaxation or due to limitations of the transient model.

4 Distance Measurements

4.1 The Symmetric Procedure

The internuclear distance between pairs of spin-1/2 nuclei may be estimated by recording DQ build-

up curves using the pulse sequence in Fig. 1. This is done by performing several experiments in

which the excitation and reconversion times are varied by taking a different number of full C-cycles.

Two different procedures have been presented in the past. A so called symmetric procedure in

which excitation and reconversion times are incremented such that τDQ1 = τDQ2 which leads to an

oscillation in the build-up curve of the form
〈
sin2 (ωτDQ1)

〉
where 〈. . .〉 denotes a powder aver-

age. The other method is the asymmetric procedure where either the excitation or reconversion

time is kept constant while the other is incremented. The latter leads to build-up curves of the form

〈sin(ωτDQ1)sin(ωτDQ2)〉, where ω can be calculated from the dipolar coupling constant. By simu-

lation good estimates for the dipolar coupling constants νdip and hence the internuclear interaction

have been provided, especially in dilute 13C spin systems.

In 31P DQ NMR build-up curves typically take a less favorable form (Fig. 7 and reference [17]).

Even though in the symmetric procedure negative DQ intensity ideally is not expected this is fre-

quently observed even at short excitation times caused by slight misadjustment in the rf-amplitude,

huge chemical shift anisotropy etc.. Another problem which is frequently encountered in 31P NMR

is the severe damping of build-up curves obscuring any oscillations beyond all recognition. The

damping may be discussed in terms of relaxation and the influence of further spins. Nevertheless

calculations including more than 2-spins indicate that for short excitation times build-up curves can

still be understood within the 2-spin approximation even in cases like Ag7P3S11 where the near-

est neighbor to the spin pair is only a factor of 1.4 further away than the internuclear distance in
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the 2-spin system (Fig. 8). In order to improve the modeling of the data different decay functions

(gaussian [25], exponential [17, 25], biexponential [22]) have been applied to the simulated 2-spin

build curves based on empirical grounds. For poor build-up curves where only a single maximum

is clearly visible both the choice of the decay function and the number of extra free variables will

influence the fitted value of νdip. It can be concluded that from these curves more quantitative esti-

mates of dipolar coupling constants and distances as in 13C DQ NMR cannot be drawn, despite the

sizeable maximum DQ efficiencies that can be reached (35% for Ag7P3S11, 34% for Na4P2O7, 56%

for Cd2P2S6).

4.2 The Constant Time Procedure

Recently it was shown that constant time procedures can help to simplify problems generated by

the damping in DQ build-up curves. DQ constant-time experiments were set up using DQ RFDR

experiments and refocussing techniques [23, 24]. The basic idea is to keep the overall recoupling

time constant so that modeling of the damping function can be reduced to a simple multiplication

of the simulated DQ build-up curve with a scalar value instead of using a damping function leading

to simplified data analysis. Since RFDR is recoupling both chemical shift anisotropy and dipolar

terms, distance determination requires additional information on the chemical shift tensors which

might not be available. In this contribution the idea of constant time DQ NMR is implemented by

keeping the sum of DQ conversion times constant τtotal = τDQ1+τDQ2 allowing the use of the pulse

sequence in Fig. 1. This procedure leads to build-up curves of the form 〈sin(ωτDQ1)sin(ωτDQ2)〉=

〈sin(ωτDQ1)sin(ω(τtotal − τDQ1))〉 where τDQ1 is incremented from zero to τtotal . These curves

are symmetrical with respect to τtotal
2 in the sense IDQ(

τtotal
2 − τ) = IDQ(

τtotal
2 + τ), hence in principle

only half the curve is necessary. In terms of the dynamic range and the oscillation frequency of

its build-up curve the constant time procedure gives similar values as the symmetric procedure,

while the necessary total length of DQ conversion times τDQ1 + τDQ2 is only about half as long.

Both short total conversion times and simplified data analysis are features indispensable for distance

measurements in 31P DQ NMR.

Experimentally the total conversion time should be minimized to reduce the losses caused by

relaxation and to reduce the influence of more distant spins. On the other hand the total conversion
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time needs to be long enough to induce a zero crossing in the build-up curve which is necessary

for reliable data analysis in terms of the dipolar coupling constant. In figures 9, 10, 11 and 12

experimental DQ constant time build-up curves are displayed for 4 different model compounds. Note

that the total conversion times were adapted individually to the expected dipolar coupling constants.

The experimental data were analyzed using simulated build-up curves in a 2-spin approximation.

Thus the only free parameters in the fitting procedure are the dipolar coupling constant νdip and a

scalar taking care of the damping induced DQ efficiency losses. As expected good overlap between

experimental and simulated curves can be obtained without prior knowledge of the chemical shift

properties using the supercycled version of C73
1 with a C-element 900 − 360180 − 2700 at 5kHz

spinning speed (Fig. 9, 10 and 11). The crystalline model compounds feature 3 different 31P-31P

distances of 3.564, 2.936 and 2.223 Å. In order to demonstrate the scheme for 13C-NMR and bigger

dipolar coupling constants a build-up curve was also acquired for 13C2-glycine (Fig. 12). 31P-

31P and 13C − 13C distances as measured by this method are summed up and compared to X-ray

diffraction distances in Table 4.

Discussion
Distance determinations in relatively dense 31P networks have so far been difficult to conduct in

a quantitative way. Here small modifications of traditional DQ NMR have resulted in an increase

in the precision of measured distances. Detailed numerical calculations of the spin dynamics have

shown the influence of chemical shift compensation, amplitude- and phase-transients and amplitude

errors. Essential for the acquisition of reliable build-up curves is that the DQ excitation sequence

is properly compensated against the chemical shift interaction. In practice it will be necessary to

numerically test if the combination of chemical shift and pulse sequence will in principle be able to

provide reliable results. In 31P DQ NMR of inorganic phosphate it was shown that at a magnetic

field of 9.4T these conditions can be achieved by the use of pulse sequences with the symmetry

C73
1 or C94

1 meaning that optimum chemical shift compensation can be achieved at relatively slow

spinning speeds.
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Even these extra-measures alone will not result in build-up curves from which dipolar couplings

and hence distances can be extracted. However interpretation of build-up curves with respect to

dipolar coupling constants is significantly simplified by the use of constant time acquisition proce-

dures replacing symmetric and asymmetric procedures. Owing to the shorter overall DQ conversion

time and the simplified analysis highly reproducible values for dipolar coupling constants can be

determined. Nevertheless the contribution of additional spins to the experimental dipolar coupling

constants remains sizeable. From the influence of the closest adjacent 31P spin (Table 3) in terms

of the quotient d2
d1

(d1 wanted 31P − 31P distance; d2 distance of the spin pair to the closest adja-

cent spin) it may be suspected that the biggest deviations between distances from DQ experiments

and x-ray diffraction occur in the case of Ag7P3S11. This is consistent with experimental findings

which indicates that in case of Ag7P3S11 build-up curves can no longer be interpreted in the 2-spin

approximation only.

In this contribution root-mean-square values are given to qualify the deviation observed between

experimental DQ constant-time curves and the fitted curves (see captions to figures 9, 10, 11 and

12). It is therefore interesting to see how the root-mean-square deviation in the ideal case reacts

onto a deliberate error in distance (Figure 13). This function depends on both the internuclear dis-

tance d and the sum of DQ conversion times τtotal . From the curves presented in Figure 13 it may

be concluded that in the ideal case, i.e. a 2-spin system without chemical shift and experimental

errors, a root-mean-square deviation of 0.1 corresponds to an error of about 1.7% in distance. Thus

in principle distances determined by DQ constant-time NMR should carry very small statistical er-

rors. However experimental imperfections have a significant contribution, as can be seen for the

confidence interval of the experimental PP-distance in Ag7P3S11 (d = (3.32± 0.02)Å) which was

obtained from a set of 6 independent experiments.

Disregarding experimental complications and contributions from adjacent spins, dipolar cou-

plings extracted from build-up curves can be translated into distances using equation 7 only if

anisotropic J-coupling, relaxation and chemical shift can be neglected and if the two-spin approxi-

mation holds. While simulations have helped to estimate errors introduced by the latter two factors,

the systematic error introduced by relaxation and anisotropic J-coupling is difficult to quantify. For

the systems which were investigated in this study only minor differences between the x-ray distance
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and NMR distance were observed, indicating that the overall systematic error is small.

5 Conclusions

The results given in this paper may be summarized as follows: (i) Distance determination in rela-

tively dense spin systems for example inorganic phosphates/biochemical systems is still possible if

DQ constant time procedures are used, (ii) chemical shift compensation adapted to inorganic phos-

phates (big chemical shift anisotropy, small isotropic chemical shift difference) may be achieved by

the use of supercycled symmetry-based sequences, namely C73
1 and C94

1. Simulations and measure-

ments of phase and amplitude transients show that the design of DQ sequences needs to respect the

restrictions imposed by transients.

Applications of constant-time DQ NMR to both organic and inorganic systems can be expected

to help providing more accurate structural constraints. Applications of the presented techniques to

amorphous C3O2 and PN are under way.
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Table 1: Chemical shift parameters and longitudinal relaxation time constants T1 for the crystalline
phosphates used. Chemical shift parameters were obtained by fitting the experimental spectrum with
simulated spectra in single spin approximation, i.e. neglecting the dipolar interaction. Exception:
† Simulated spectra were calculated for a two spin system including the chemical shift, magnetic
dipole dipole interaction and a center of inversion.

compound δiso/ppm δaniso/ppm η r/10−2 crystal structure T1(T = 20.0 ◦C)/s
103.2 −15 0.54 32

Ag7P3S11 101.4 −50 0.42 4.2 [26] 27
92.0 +40 0.74 32

Cd2P2S6
† 103.4 +18 0.88 3.5 [28] > 2200

Na4P2O7 2.7 +88 0.26 3.6 [27] 195
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Table 2: Candidate C-/R-Symmetries suitable for γ-encoded dipolar DQ excitation; listed are the
best 32 supercycled C-/R-pulse sequences sorted by their chemical shift compensation which is
reflected in the parameter Bmax; in the column with the C- and R-elements the composite pulse
is given in the notation f lipanglepulse phase in degrees; the column “Type” refers to the recoupled
average Hamiltonian H̄ (1)

lmλµ, “A” denotes terms with (l,m,λ,µ) equal (2,−1,2,2),(2,1,2,−2) and
“B” denotes terms with (l,m,λ,µ) equal (2,1,2,2),(2,−1,2,−2); more details can be found in the
text.

C-Class R-Class

CNν
n Type C-Element Bmax/T |κ| νr f

νmas
RNν

n Type R-Element Bmax |κ| νr f
νmas

C178
1 A 900 −360180 −2700 12.9 0.1758 34 R3231

2 A 1800 13.9 0.1763 8

C157
1 A 900 −360180 −2700 12.8 0.1755 30 R3433

2 A 1800 13.7 0.1764 8.5

C136
1 A 900 −360180 −2700 12.5 0.1751 26 R3635

2 A 1800 12.8 0.1764 9

C115
1 A 900 −360180 −2700 12.1 0.1745 22 R3837

2 A 1800 12.6 0.1765 9.5

C94
1 A 900 −360180 −2700 11.3 0.1733 18 R4039

2 A 1800 12.4 0.1765 10

C167
2 A 900 −360180 −2700 10.6 0.1724 16 R3014

2 A 600 −300180 −600 11.4 0.1343 17.5

C73
1 A 900 −360180 −2700 9.3 0.1711 14 R209

2 A 600 −300180 −600 11.3 0.1334 11.66

C181
2 B 900 −360180 −2700 8.7 0.1733 18 R2411

2 A 600 −300180 −600 11.2 0.1339 14

C171
2 B 900 −360180 −2700 8.5 0.1729 17 R2813

2 A 600 −300180 −600 11.2 0.1342 16.34

C161
2 B 900 −360180 −2700 8.3 0.1724 16 R167

2 A 600 −300180 −600 11.1 0.1325 9.34

C151
2 B 900 −360180 −2700 8.0 0.1718 15 R2612

2 A 600 −300180 −600 11.1 0.1341 15.16

C201
2 B 3600 7.9 0.1743 10 R2210

2 A 600 −300180 −600 11.0 0.1337 12.84

C141
2 B 900 −360180 −2700 7.8 0.1711 14 R188

2 A 600 −300180 −600 10.7 0.1330 10.5

C199
1 A 3600 7.6 0.1761 19 R125

2 A 600 −300180 −600 10.5 0.1306 7

C178
1 A 3600 7.6 0.1759 17 R3013

4 A 600 −300180 −600 10.3 0.1321 8.76

C157
1 A 3600 7.5 0.1757 15 R3028

4 A 900 −270180 10.3 0.1724 7.5

C131
2 B 900 −360180 −2700 7.5 0.1702 13 R146

2 A 600 −300180 −600 10.1 0.1318 8.16

C191
2 B 3600 7.4 0.1741 9.5 R2611

4 A 600 −300180 −600 9.6 0.1312 7.58

C136
1 A 3600 7.4 0.1753 13 R3432

4 A 900 −270180 9.3 0.1734 8.5

C121
2 B 900 −360180 −2700 7.2 0.1691 12 R1413

2 A 900 −270180 9.2 0.1718 7

C115
1 A 3600 7.1 0.1747 11 R2826

4 A 900 −270180 9.2 0.1718 7

C181
2 B 3600 7.0 0.1737 9 R3634

4 A 900 −270180 9.2 0.1737 9

C209
2 A 3600 6.9 0.1743 10 R1817

2 A 900 −270180 9.2 0.1737 9

C111
2 B 900 −360180 −2700 6.8 0.1677 11 R3617

2 A 900 −270180 9.0 0.1760 18

C171
2 B 3600 6.6 0.1734 8.5 R3028

4 A 600 −300180 −600 8.9 0.1322 8.76

C101
2 B 900 −360180 −2700 6.5 0.1658 10 R1615

2 A 600 −300180 −600 8.9 0.1325 9.34

C94
1 A 3600 6.5 0.1737 9 R2422

4 A 600 −300180 −600 8.9 0.1306 7

C125
2 A 900 −360180 −2700 6.4 0.1691 12 R1211

2 A 600 −300180 −600 8.9 0.1306 7

C161
2 B 3600 6.3 0.1729 8 R3416

2 A 900 −270180 8.8 0.1759 17

C91
2 B 900 −360180 −2700 6.1 0.1633 9 R2221

2 A 900 −270180 8.8 0.1747 11

C167
2 A 3600 6.1 0.1729 8 R2019

2 A 900 −270180 8.8 0.1743 10

C151
2 B 3600 6.0 0.1724 7.5 R3215

2 A 900 −270180 8.7 0.1758 16
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Table 3: Internuclear 31P-31P distances for Ag7P3S11, Na4P2O7, Cd2P2S6 and the 13C-13C distances
for glycine taken from single-crystal X-ray structures; Given are internuclear distances d1 for the
excited DQ coherences and the distance to the next nearest neighbor d2

d1/Å d2/Å d2
d1

Ag7P3S11 3.564 5.010 1.41
Na4P2O7 2.936 4.762 1.62
Cd2P2S6 2.223 4.786 2.15
glycine 1.526 3.104 2.03
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Table 4: Comparison of internuclear 31P-31P distances d for Ag7P3S11, Na4P2O7, Cd2P2S6 and the
13C-13C distances for glycine as measured by X-ray diffraction and NMR; compare Fig. 9,10, 11
and 12

X-ray NMR
d/Å d(DQ-CT)/Å

Ag7P3S11 3.564 3.32
Na4P2O7 2.936 2.94
Cd2P2S6 2.223 2.33
glycine 1.526 1.53

35



τDQ1 τDQ2 time

C71
3C71

3

FID

π/2

+2
+1

−1
−2

0p

reconversionexcitation

Figure 1: DQ pulse sequences (schematic); DQ-pulse sequence used for distance determination in
symmetric, asymmetric and constant time excitation schemes (see text).
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Figure 3: Deviation from the ideal DQ build-up curve rmsDQ as a function of the external mag-
netic field; individual DQ build-up curves were calculated for pulse sequences with the symmetries
R146

2, C71
2, C73

1 and C94
1 using 900 − 360180 − 2700 as C-element and 900 − 270180 as R-element

respectively and the spin-parameters of Na4P2O7 as given in Tables 1 and 3 (simulation conditions:
2-spin approximation including dipolar interaction and chemical shift, rf nutation frequency used for
DQ-excitation 70kHz).
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Figure 4: Deviation from the ideal DQ build-up curve as a function of the amplitude error for the
pulse sequences C73

1, C94
1 and R3014

2 with the elements C=900−360180−2700 and R=600−300180−
600 respectively.

39



2700360180 900

−0.1

0

0.1

0 1e−05 2e−05

U/V

U
/V

t/s

Figure 5: Pulse and phase transients monitored from the voltage in a pickup coil for a pulse train of
C71

2 with an element C= 900 −360180 −2700 at 20kHz spinning speed.
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Figure 6: Influence of phase and amplitude transients: 31P DQ efficiency as a function of the ampli-
tude error eamp; A experimental curve, B simulated curves with and without the influence of pulse
and phase transients for the 31P spin-pair in the heptathiodiphosphate group in crystalline Ag7P3S11,
using C71

2 with the C-element 900 −360180 −2700 at 10kHz spinning frequency and τDQ = 1.6ms.
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Figure 7: Experimental 31P DQ build-up curve acquired according to the symmetric procedure for
Na4P2O7 using pulse sequence Fig. 1,C73

1, super cycling and the C-element 900 − 360180 − 2700,
νr = 5kHz.
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Figure 8: Influence of the size of the spin system onto the 31P DQ build-up curve for the P2S7
group in crystalline Ag7P3S11 using supercycled C73

1 with the C-element 900 − 360180 − 2700 at
5kHz spinning frequency; shown are curves for 2-spin calculations without (denoted ideal) and with
chemical shift interaction (denoted 2-spin) and for the DQ filtered intensities of the same two spins
under the influence of 5 closest spins and the chemical shift (denoted 7-spin).
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Figure 9: 31P Constant-time DQ build-up curves for Na4P2O7 using supercycled C73
1 with the C-

element 900 − 360180 − 2700 at 5kHz spinning frequency; vertical bars: experimental data; points
with dotted lines: best fit corresponding to νdip =−774Hz and r = 0.024; lines are meant as guide
to the eye.
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Figure 10: 31P Constant-time DQ build-up curves for the P2S7-group in crystalline Ag7P3S11 using
supercycled C73

1 with the C-element 900−360180 −2700 at 5kHz spinning frequency, vertical bars:
experimental data; points with dotted lines: best fit corresponding to νdip =−545Hz and r = 0.017;
lines are meant as guide to the eye.
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Figure 11: 31P Constant-time DQ build-up curves for Cd2P2S6 using supercycled C73
1 with the C-

element 900 − 360180 − 2700 at 5kHz spinning frequency, vertical bars: experimental data; points
with dotted lines: best fit corresponding to νDip =−1563Hz and r = 0.007; lines are meant as guide
to the eye.
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Figure 12: 13C Constant-time DQ build-up curves for glycine C71
2, C-element 900 −360180 −2700,

super cycle
[
C71

2

]
+0◦

[
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]
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; vertical bars: experimental data; points with dotted lines (as
guide to the eye): best fit corresponding to νdip =−2128Hz and r = 0.007; lines are meant as guide
to the eye; νr = 5kHz; DQ conversion times were incremented in steps of 2 C-elements.
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Figure 13: Root mean square deviation r between a DQ constant-time build-up curve with a fixed
internuclear distance d f ixed and DQ constant-time curve calculated for an internuclear distance d; the
root mean square deviation becomes zero if d f ixed equals d; shown are three curves with d f ixed being
chosen as the measured distances for the three model compounds Cd2P2S6, Na4P2O7 and Ag7P3S11
by constant-time DQ NMR (Table 4).
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