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Abstract

Accurate  determination  of  1H NMR signal  intensities  is  useful  for  quantitative  analysis  of  the 

hydrogen content and also to determine the relative peak intensity ratios in different application 

scenarios. To this end we have investigated the reliability and sources of intensity errors in 1H solid-

state MAS NMR. If sufficient resolution can be achieved by very high spinning speeds and high 

magnetic fields, quantification is straight forward. However for poorly resolved spectra we show 

that small phase errors add a considerable amount of uncertainty. An analytical expression for the 

phase induced intensity-errors allowed us to suggest a robust and reliable recipe which is based on a 

combination of the spin-echo experiment, an extrapolation technique and a deconvolution algorithm 

which  includes  fitting  of  the  signal  phase.  It  significantly  reduces  errors  caused  by  phase 

distortions, homonuclear dipolar dephasing, the receiver dead time delay and baseline rolling.  The 

method was validated experimentally on samples with strong homonuclear dipolar interactions.
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Introduction

One of the attractive features of NMR is that signals are proportional to the number of detected 

spins, which allows to perform quantitative analysis by NMR (qNMR). Unlike ordinary chemical 

analysis by other chemical or physical methods NMR not only allows to determine the total amount 

of an NMR active isotope but also its amount  in different chemical environments. 

Since qNMR is well established in liquid-state NMR [1,2] here we focus on quantification of solid-

state NMR spectra. Under typical conditions the sensitivity of the NMR experiment is rather limited 

which doesn't make NMR a likely candidate for trace analysis where the analyte is below 1% in 

concentration. Applications of solid-state qNMR are wide spread too, covering different areas as for 

example pharmaceutical formulation,[3,4] cement base materials,[5,6] drugs,[7,8,9] coals [10] or amorphous 

materials  [11] and  different  nuclei  like  13C  [3,9,12,13,14],  29Si  [13],  119Sn  [13]  and  23Na  [15].  Interestingly 

methods based on 13C-CP-MAS NMR have proved to be quantifiable for organic matter [13].

A particularly tempting target/analyte for quantification are hydrogen atoms. In solids the hydrogen 

content is usually quantified by combustion analysis [16] which gives reliable results in many cases. 

However 1H solid-state NMR is a very sensitive probe and the resolution has improved significantly 

even  in  single-pulse  excitation  (SPE)  experiments  with  the  advent  of  very  fast  magic-angle-

spinning  probes  [17].  Moreover  1H  qNMR  allows  to  distinguish  between  chemically  relevant 

hydrogen and hydrogen coming from impurities (for examples laboratory grease) and works even in 

cases where simple combustion analysis fails because of the stability of the samples as in case of 

ceramics or some inorganic solids. 1H qNMR even complements x-ray diffraction because NH and 

O fragments can hardly be distinguished from one another in the diffraction pattern, while hydrogen 

in hydrogen-bonds often results in exceptional chemical shift values (10-18 ppm  [18,19,20,21]) which 

helps spectral resolution and assignment in the NMR spectrum.

Systematic studies in solid-state qNMR have highlighted different sources of errors, for example 

repetition delays (related to spin-lattice relaxation) [3,9], pulse-length effects [9], spectrometer stability 

issues  [15], sample preparation, quantitative analysis with internal or external reference  [2,3,14,15] and 

packing effects of the material in the MAS rotor [14,15], which lead to false intensities when excited 

by  inhomogeneous  radio-frequency  fields.  An  exhaustive  protocol  for  solid-state  qNMR  has 

recently been published [9].

As for other analytical  methods also in qNMR many of the above mentioned problems can be 

circumvented by quantification relative to an internal reference [2,3], in contrast to quantification to 

an  external  reference,  which  critically  depends  on  the  stability  of  the  spectrometer  sensitivity 

constant. For this purpose the to-be-analyzed sample is mixed with a known reference sample of 
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high purity (internal reference) where the mass ratio, reference mass m ref  to analyzed sample mass 

m sample , is known. The area below a peak  a  is proportional to the number of nuclei detected by 

NMR. Consequently the ratio of peak areas is proportional to the ratio of the number of detected 

nuclei  nnuc  in mole in the analyte and the reference sample in the ideal case. Because the molar 

mass and the number of detected nuclei per mole xref  of the reference sample is known, the ratio 

nnuc , analyte

nnuc , ref
 may be rewritten in the following form.

aanalyte

aref

=
nnuc ,analyte

nnuc , ref

=
nnuc ,analyte

nref xref

=
nnuc ,analyte

mref /M ref xref

(1)

Variations in natural abundance of the detected isotope have been neglected for simplicity.  The 

result of a quantification is typically given in mole analyte per mass 
nnuc ,analyte

msample

. Its calculation from 

equation (1) is straight forward. In our experience the usage of an internal reference improves the 

relative error of  
nnuc ,analyte

msample

 from about 30% for quantification to an external reference to below 

10% for spin-1/2 nuclei other than 19F and 1H (results not shown). 

Because our first results of solid-state  1H qNMR on amorphous samples were disappointing, here 

we present an analysis  of possible errors and an improved protocol.  Our hypothesis is  that  the 

combination of receiver dead-time delay, homonuclear dipolar dephasing and baseline distortions 

leads to frequency dependent phase shifts of the signal which cause significant errors in qNMR with 

internal references. To test the hypothesis we derive an analytical expression for the relative error of 

the peak area ratio of two dephased peaks of lorentzian lineshape. We then propose a protocol based 

on  an  extrapolation  approach  and  the  Hahn  echo  [22] which  avoids  the  receiver  dead-time  and 

accounts  for  intensity losses through homonuclear  dipolar  dephasing and transversal  relaxation. 

Finally the protocol is validated for a sample with strong 1H- 1H magnetic dipole-dipole couplings at 

low magnetic fields and moderate sample spinning frequencies and compared to data obtained at 

medium magnetic fields and very high sample spinning frequencies.
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Theory

The  hypothesis  of  this  contribution  is  that  even  when  following  the  protocol  presented  in 

reference [21] phase errors may distort the lineshape of a neighboring peak to such an extent that in 

case of broad, poorly resolved peaks a significant error in the determined peak area ratio may result. 

A visual  presentation  of  the  idea  is  presented  in  Figure 1.  A small  phase  error  will  cause  an 

admixture of dispersive lineshape of peak A to peak B so that amplitude of peak B is  virtually 

decreased while in reverse peak B adds a bit of intensity to peak A. We conclude that the resulting 

error in peak ratio  r  depends on the signal phase    and may be positive or negative. Because 

dispersive lineshapes have a much slower decaying behavior away from the center frequency than 

their absorptive counterparts, it is interesting to ask in which cases this mechanism is relevant. In 

the following we derive an estimate of this error based on lorentzian lineshapes.

To derive a simple analytical expression of the relative error 
 r
r

 of the peak ratio r  which results 

from a  dephased  spectrum of  two  peak  A and  B,  we  need  to  make  a  number  of  simplifying 

assumptions. We assume the two peaks can be described as lorentzian functions with the parameters 

integrated peak area a  , linewidth (full width at half height in Hz) i  and center frequency i  for 

peak  i . The real part of complex lorenztian  [23]  Li  ,i ,i , ai ,   may be written in terms of an 

absorptive L abs , i  ,i ,i   and a dispersive contribution L dis ,i  ,i ,i  .

 

L abs , i  ,i ,i =
i/2

  i/2 
2
−i 

2

Ldip ,i  ,i ,i =
−−i 

  i/2 
2
−i 

2

(2)

The  spectral  lineshape  of  a  resonance  with  a  phase    can  be  determined  by  evaluating  the 

following function over all frequencies  . A peak in pure absorption then has a phase of 0°. 

L i  ,i ,i , a i ,=a i cos  Labs ,i  ,i ,i −sin  Ldis ,i  ,i ,i   (3)

The total  lineshape  S exp    of  a  dephased spectrum consisting of two peaks  can be written as 

follows.

S exp  =LA  ,A ,A , a A , LB  ,B ,B , aB ,  (4)

In order to deconvolute such a spectrum we assume it is being fitted with two lorentzian lineshapes 

in pure absorption, i.e. =0 , where linewidths and center frequencies do not change.

S fit  =Labs , A  ,A ,A , a Afit Labs , B  ,B ,B ,aBfit  (5)

The task is to find the fitted peak areas aAfit , aBfit  which give the smallest deviation between S fit    
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and S exp    in other words the smallest "total square error" E .

E=∫
−∞

∞

S exp−S fit 
2
d  (6)

Necessary conditions for the optimum set of parameters aAfit , aBfit  are

∂E
∂ aAfit

=0 ∧
∂E
∂ aBfit

=0 . (7)

These  two  equations  can  be  solved  simultaneously  for  a Afit  and  aBfit ,  the  term  A−B  is 

substituted by  , the sum of linewidths AB  by s , the term a A/aB  by r  and the relative 

error  
r
r

=
a Afit/ aBfit−a A/a B

aA/ aB
 of  the  ratio  is  calculated  in  equation (8).  Because  experimental 

spectra are usually "phased" such that the phase   is very close to zero a Taylor expansion up to 

2nd order of    around 0° may be applied to identify the main sources of error.

r
r
≈X 1⋅X2⋅

2
(8)

where X1  and X 2  (see supporting information) are

X 1=
4s As4ABrBsr

2 16 ABr2 
3

r A
2
−B

2 
2
8s

2


2
16

4 
. (9)

This formula provides an error estimate for a given set of line shape parameters of two peaks. We 

calculated plots of the relative error  r /r  as a function of the signal phase    for a particular 

intensity ratio r  (see Figure 6) and as a function of the peak area ratio r  at a particular phase   

(see Figure 7) by using the formula in equation (8). From the curves it is clear that not only the 

signal phase has a significant influence when its values deviate from 0° but also that relative error 

passes through a minimum  which is located at a peak area ratio r  close to one. It should be noted 

that  these  formulas  only apply to  the  case  of  pure  Lorentzian  lineshapes  and not  to  lineshape 

functions like Gaussian or Voigt functions. The latter have a faster decaying characteristic away 

from the lineshape center, therefore above a certain minimum peak difference the given error should 

serve as an upper limit of the peak area ratio.

We conclude that uncertainties in the signal phase may become the main source of error (see section 

validation) if spectra are only poorly resolved as in case of the slow-spinning spectrum in Figure 2. 

While qualitatively this has been noted before [24,25], we provide an error estimate based on a simple 

analytical formula. 

How can the phase induced error be reduced? Usually during phase correction of a spectrum (called 

“phasing”) the operator manually or automatically [26,27,28,29] applies a phase shift   to each point of 
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the spectrum [23]. The phase   is often chosen to be a linear frequency dependent function. If the 

frequency  dependent  component  (first-order  correction)  is  absent  then  the  phase  shift  can  be 

described by a constant  0  (zeroth-order correction) which is applied to all  data points  in the 

spectrum. The frequency dependent contribution is necessary to compensate for phase shifts caused 

by the receiver dead time delay in SPE experiments, finite pulse effects and bandwidth limitations 

of the spectrometer. After phase correction the frequency dependent contribution manifests itself in 

form of  a  rolling  baseline  in  the  spectrum  [30,p. 145]  which is  then  removed by subtraction  of  a 

calculated baseline function. Critical steps in this procedure are the manual phase correction which 

will  automatically  cause  instabilities  in  the  phase    and  the  baseline  correction.  Baseline 

correction however is difficult in poorly resolved spectra because not enough true baseline points 

are available. In our opinion baseline corrections are especially critical and should be avoided for 

the given reasons. Baseline distortions can significantly be reduced by avoiding the receiver dead 

time delay with the help of a rotor-synchronized spin-echo sequence (see  Figure 3).  The recipe 

presented  below is  therefore  based  on  quantification  with  the  Hahn  spin-echo,  combined  with 

automatic phasing which is included in the deconvolution process. Like that manual interference by 

the operator is avoided and the resulting intensity errors are reduced. However due to longer delays 

before  the acquisition  intensity losses  by finite  pulse effects,  transversal  relaxation and dipolar 

dephasing need special consideration (see below).

Results and Discussion 

Quantification Protocol

The following protocol is an incomplete [9,21] listing of steps necessary for 1H NMR quantification to 

compensate for the sources of intensity ratio errors as explained above. For spectrometer settings, 

signal to noise ratios,  setting of repetition delays  [24] and various details of qNMR experiments 

consult references [9,21,24].

1. Choose internal reference. The reference should be chemically inert and its peak(s) must be 

distinguishable from sample peaks.

2. Weigh in internal reference and to-be-analyzed sample. If possible choose the mass ratio 

such that peak areas of analyte and internal reference are of similar size.

3. Make a homogeneous mixture.

4. Obtain  quantitative  MAS  NMR spectra  at  highest  available  magnetic  field  and  sample 

spinning frequencies. Choose spectrometer settings which make 1st order phase corrections 

and  consequently  baseline  corrections  of  the  spectrum  unnecessary.  Use  a  rotor-

synchronized Hahn echo and acquire spectra at different   values (see Figure 4). Subtract 

the probe 1H background if necessary.
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5. Determine  peak  area  ratios  a analyte /a ref  by  deconvolution  of  spectra.  Set  lineshape 

parameters on pure samples separately. Use constrained fitting with more than one set of 

gauss/lorentzian lineshape parameters  per  peak if  necessary.  Zeroth order  spectral  phase 

should be fitted simultaneously.

6. Extrapolate  the  peak area ratio  a analyte /a ref  to    equals zero, if the spin-echo experiment 

was used to acquire quantitative spectra.

7. Calculate analyte per mass ratio with equations 10 and  11, so that offset dependent pulse 

excitation effects are considered.

f r off ,ref 
f  roff , analyte 

aanalyte

aref

=
nnuc , analyte

mref /M ref xref

(10)

In the following we will explain which considerations lead to the individual points in the protocol.

To 1: The choice of an appropriate internal reference next to the mentioned criteria should be based 

on short spin-lattice relaxation times, sharp resonances.

To 2:  This  step  generally  represents  the  smallest  source  of  error  if  properly  handled.  For 

hygroscopic or air-sensitive samples a glove box filled with Ar or N2 as inert gas may be beneficial. 

A peak area ratio close to one helps reducing errors from small errors in the phase correction.

To 3: Making the sample homogeneous can be difficult, if as in the case of adamantane one of the 

components has a tendency to stick to tools like the agate mortar. Sample losses can in principle be 

estimated by preparing a series of mixtures with different ratios, which should give the same results. 

To 4: If resonances are properly resolved no special precautions have to be taken and simple single-

pulse excitation is the method of choice. Then however proper baseline correction will be necessary. 

If the spin-echo experiment is used, first order phase correction and hence baseline correction will 

not  be  necessary.  In  principle  it  should  be  possible  to  use  composite  pulses  to  increase  the 

bandwidth of the spin-echo experiment, however we require not only broadband excitation with 

respect to the magnitude of the signal but also no phase distortions. For this reason we use the 

ordinary spin-echo  experiment  as  indicated  in  Figure 3 which  has  the  advantage  of  an  almost 

perfectly linear phase profile at the cost of a reduced excitation bandwidth as compared with single-

pulse excitation (see  Figure 5). We modified the original spin-echo experiment by a small delay 

  to compensate linear phase errors caused by finite and hidden delays in the receiver within the 
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experiment.

The intensity of spinning sidebands should be reduced as much as possible by high sample-spinning 

frequencies to increase resolution,  to increase signal-to-noise ratio,  to reduce dipolar  dephasing 

during the spin-echo experiment and because the handling of off-resonance effects is simplified. 

High magnetic fields can help to increase resolution because line broadening through zeroth order 

rotational resonance is reduced.

To 5: Because integration as a means to determine peak areas is not feasible if resonances are not 

well resolved deconvolution has to be used. Deconvolution of spectra of solid samples is generally 

not simple and complicated lineshapes might require constrained deconvolution with several gauss-

lorentzian  functions  per  peak.  Especially  when  spectra  with  extreme  intensity  ratios  are 

deconvoluted it is advisable to "train" the lineshape deconvolution program on the pure samples 

because tiny deviations in the main peak will distort the lineshape of the weaker peaks significantly. 

In order to reduce errors by an incorrectly chosen phase 0  the final step in the lineshape fitting 

procedure should include the phase 0  and the peak areas in the list of variable parameters.

To 6:  During the evolution period    (see  Figure 3) strong magnetic homonuclear dipole-dipole 

interactions  between  hydrogen  nuclei  and  transversal  relaxation  will  cause  a  decay  of  the 

magnetization.  The former is a coherent process,  we refer to as “dipolar dephasing”.  If several 

rotor-synchronized spin-echo experiments have been recorded with variable delays     then it is 

possible  to  extrapolate  the peak intensities/areas to  zero delay,  so that  the peak area ratios  are 

virtually freed of errors caused by dipolar dephasing and transversal relaxation.

To 7: If the sample is spun fast enough, so that no spinning sidebands are visible, then the off-

resonance losses can be quantified and corrected for with simple analytical  formulas for signal 

magnitude, otherwise losses can be accessed by numerical programs only. The signal yield f r off   

in  the spin-echo experiment  is  a  simple function  independent  from the delay   ,  if  transversal 

relaxation and dipolar dephasing are neglected.

f  roff =
∣a  roff ∣
∣a 0 ∣

=

2 12 r off
2
cos  1

2
1r off

2 ⋅sin  1
4
1r off

2 
2

⋅sin2 1
2
1r off

2 
1r off

2 
2

(11)
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where roff =
offset

rf
 and ∣a 0 ∣  is the integrated peak area measured on resonance.

This formula has been obtained by explicit calculation of the evolution of the spin density matrix in 

the spin echo experiment under consideration of a transmitter frequency offset offset  and spin-echo 

pulses with a  nutation frequency rf , which is defined as the inverse of the length of a pulse with 

360° flip angle.

Validation

Will the phase error cause a relevant error under typical experimental conditions? As an example we 

have calculated the estimated errors for the two 1H NMR spectra for a mixture of adamantane and 

ammonium  dihydrogenphosphate  in  Figure 2.  The  peak  parameters  were  chosen  from  a 

deconvolution with pure lorentzian functions and a typical error of the signal phase was estimated 

from the standard deviation for the zeroth order phase when processing the data manually several 

times.  Since  ammonium  dihydrogenphosphate  has  two  different  resonances  at  6.4 ppm  and 

14.9 ppm, we have chosen only the one peak which is closer to the adamantane resonance for the 

calculation of the phase induced error. The calculated relative error r /r  by using equation (8) at 

a sample spinning speed of 25 kHz was 5.5% (standard deviation of the zeroth order phase 2.93°), 

while the relative error for a spin-echo experiment at a sample spinning frequency of 65 kHz was 

only  0.08% (standard  deviation  of  the  zeroth  order  phase  0.2°).  Clearly  for  spectra  with  low 

resolution as the one presented at 25 kHz sample spinning frequency the phase error presents a 

significant source of error.

Next we wish to provide proof for an improvement in the quality of quantification by applying the 

presented protocol based on the spin-echo experiment, deconvolution including phase fitting and 

extrapolation to zero   delays. To this end we have prepared a series of mixtures of adamantane 

and ammonium dihydrogenphosphate with different but known mass ratio as reported in Table 1. 

Adamantane was chosen because is well suited to act as an internal standard for quantitative  1H 

NMR analysis. Ammonium dihydrogenphosphate is an example for a sample with strong dipolar 

couplings which cause significant line broadenings.

For comparison we have determined peak areas by deconvolution from experimental spectra of the 

specified  mixtures  under  different  conditions.  In  all  cases  the  spectra  were  acquired  with 

sufficiently  long  repetition  delays  and  the  same  samples  were  used.  To  mimic  low  resolution 

conditions we acquired spectra by single pulse excitation, at low magnetic field (4.7 T) and at only 

25 kHz sample spinning frequency (case I). For high resolution conditions we chose a magnetic 

field of 14.1 T,  a sample spinning frequency of 65 kHz and the spin-echo experiment  (case II). 

Finally we applied the presented recipe (case III) under the low resolution conditions of case I. The 
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results are shown in Figure 8 in the form of correlation plot where the observed peak area ratio r obs  

is shown as a function of the ratio r exp , which is expected by composition. The estimated standard 

deviations of the relative error for case I, case II and case III are 62%, 4.1% and 4.9%, respectively. 

The  results  indicate  that  even  under  low  resolution  conditions  reliable  quantification  can  be 

achieved if the presented protocol is being followed. The peak area ratios of the analyte and the 

internal  reference  in  this  study cover  a  range  of  approximately from 4:5  to  12:1  and  all  give 

satisfactory results. It is remarkable that the curve for case I (see Figure 8) shows a systematic error 

to  higher  peak  area  ratios,  which  has  been  abolished  completely  by  the  use  of  the  suggested 

protocol (case III). 

Note that in case III we also applied the suggested extrapolation to zero   values. In Figure 4 the 

peak area ratios of a particular mixture are plotted against the spin-echo delay  . The    values 

were modified by using integer multiples of the rotor period for  / 2  and/or choosing slightly 

different spinning frequencies in the spin-echo experiment. In our example, extrapolation to zero   

values may be achieved by linear regression. As compared to a    value of  80s  the true peak 

area ratio is only 86% of the former. Because the term 
f r off ,ref 

f  roff , analyte 
 does not depend on the ratio of 

the mixture, the same correction term has been applied to all determined peak area ratios r obs .

To which extent do the various described mechanisms contribute to the error of the peak area ratio? 

Figure 4 indicates that losses through relaxation and dipolar dephasing are negligible in case I while 

in case III the error amounts to 14%. From the given formulas it is clear that off-resonance effects 

are negligible in the presented cases (i.e. < 0.5%). Errors through the manual setting of the spectral 

phase  (zeroth  order  “phasing”)  amount  to  5.5%,  0.08% in  case I  and  case II,  respectively (see 

above). In single-pulse excitation experiments it is difficult to disentangle errors caused by baseline-

rolling, baseline corrections and signal phase. However from the difference between the estimated 

standard deviations in case I of 62% and the above mentioned sources of errors we conclude that it 

could amount up to 42%. We conclude that in the presented low-field case measures to reduce 

baseline distortions (and therefore the need for first order phasing) have the biggest influence on the 

relative  peak  ratio  error,  followed  by losses  through  relaxation/dipolar  dephasing,  followed  by 

errors through the manual setting of the spectral phase and last by finite pulse errors.

Experimental Section

The  samples  adamantane  C10H16 (ACROS  Organics,  99%)  and  ammonium 

dihydrogenphosphate  NH4H2PO4 (Grüssing, 99%)  were  used  without  any  further  purification. 
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Different mixtures were prepared by adding the two compounds in an appropriate composition (see 

Table 1). Samples were made homogeneous by finely grinding the mixtures with the help of an 

agate mortar.

Solid State NMR experiments were conducted at  a magnetic  field  of 4.7 T on a Bruker 

AvanceII-200  equipped  with  a  2.5 mm  double  resonance  MAS  probe  at  1H  frequency  of 

200.175 MHz and at a magnetic field of 14.1 T on a Bruker AvanceIII-600 spectrometer equipped 

with a 1.3 mm triple resonance MAS probe at 1H frequency of 600.13 MHz. The one dimensional 

(1D) 1H NMR spectrum was acquired with a 90° pulse length of 2.5 s, recycle delays of 16 s and 

at sample spinning frequency of 25 kHz, while spectra at 65 kHz were collected using excitation 

pulses  of  2 s,  and  recycle  delays  of  8 s.  The  spin-echo  sequence  selected  coherence  transfer 

pathways with a 16 step phase cycle. The repetition delay was chosen to ensure negligible intensity 

errors by insufficient longitudinal relaxation i.e. longer than 5⋅T 1 . In order to reduce spectrometer 

bandwidths distortions from the digital filters we chose the biggest spectral widths possible.

Conclusion 

We have shown how 1H NMR needs to be used in order to quantify the hydrogen content in solid 

materials. The basic idea is that the signal phase is becoming an important source of error once the 

spectral resolution decreases below a certain limit.  In that case the usual method - single pulse 

excitation followed by baseline correction and deconvolution - fails. The presented equations give 

an estimate for the phase error for a given set of lineshape parameters and help with the decision 

whether  phase  errors  need  to  be  considered  or  not.  An  important  conclusion  drawn  from the 

presented formula is that extreme intensity ratios between the peaks of the internal reference and the 

analyte  are  to  be  avoided.  If  phase  errors  need  to  be  considered,  we  have  shown  that  an 

experimental protocol including the spin-echo experiment, an extrapolation technique and phase 

fitting  may  reestablish  error  margins  similar  to  those  under  high  resolution  conditions.  High 

resolution  conditions  may  sometimes  be  achieved  simply  by  doing  the  experiments  in  high 

magnetic  fields  combined  with  the  highest  currently  available  magic  angle  sample  spinning 

frequencies.  We believe  that  the  presented  approach can  be  transfered  to  other  nuclei  like  for 

example  19F. It is not only of relevance for qNMR in the sense of an absolute quantification of 

hydrogen content in a sample but also for quantifying relative peak intensities which is useful for 

locating hydrogen atoms in crystalline solids.
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mixture m(C10H16)/mg m(NH4H2PO4)/mg rexp

1 1012.3 2055.9 1.11

2 512.0 420.7 2.74

3 100.0 550.6 0.41

4 621.1 620.3 2.25

5 62.8 1062.4 0.13

6 199.6 450.3 0.99

7 454.8 87.6 11.7

8 450.0 150.0 6.76

Table 1: Sample mixtures of adamantane and ammonium dihydrogenphosphate used in  Figure 8 

and the expected peak area ratio r exp  defined as a  NH4 H2 PO4 /a C10 H16  .
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Figure 1: Simulated NMR spectra of a line shape function perfectly in phase (dotted line) and a 

lineshape  being  out  of  phase  (signal  phase  = 10°)  but  with  otherwise  identical  lineshape 

parameters.

Figure 2: 1H MAS NMR spectra of a mixture of adamantane and ammonium dihydrogenphosphate 

obtained at (bottom to top) 65 kHz and 25 kHz sample spinning speed, respectively; spectrum (b) 

was recorded at 600 MHz and spectrum (a) was recorded at 200 MHz resonance frequency.
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Figure 3:  Modified  rotor-synchronized  spin-echo  pulse  sequence  used  for  quantitative 

measurements; r  designates a rotor period,   is a small delay which has to be determined once 

so that (small) first order phase corrections become unnecessary; these are caused by finite pulse 

effects and hidden delays in the receiver of the NMR spectrometer.

Figure 4: Experimental peak area ratio as a function of the spinecho delay   (see Figure 3) for a 

mixture of adamantane and ammonium dihydrogenphosphate (mixture 5, see Table 1) determined 

by  1H MAS NMR;   the  solid  line  was  obtained  by linear  regression;  experimental  conditions 

(case III, see text): sample spinning speed  ~25 kHz, magnetic field of 4.7 T.
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Figure 5: Signal  yield  as  a  function  of  the  offset  factor  off /rf  of  a  single  pulse  excitation 

experiment (SPE with a pulse with 90° flip angle) and a spin-echo experiment (Echo);  off  is the 

difference between transmitter frequency and Lamor frequency, rf  is the pulse nutation frequency 

rf  (see text).
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Figure 6: Relative error of the peak area ratio 
r
r

  as a function of the signal phase   for a given 

peak area ratio  r ;  the curves were calculated by using the analytical  expression  presented in 

equation (8);   the  lineshape  parameters  refer  to  peaks  of  adamantane  and  ammonium 

dihydrogenphosphate  as  specified  in  the  text  adamantane=290.0 Hz ; 

ammonium dihydrogenphosphate=530.0 Hz  and =1008.0 Hz .
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Figure 7: Relative error of the peak area ratio 
r
r

 as a function of peak area ratio r  for a given 

signal phase error   ; the curves were calculated by using the analytical expression presented in 

equation (8);  the  used  lineshape  parameters  refer  to  peaks  of  adamantane  and  ammonium 

dihydrogenphosphate  as  specified  in  the  text  adamantane=290.0 Hz ; 

ammonium dihydrogenphosphate=530.0 Hz  and =1008.0Hz .
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Figure 8: Observed  peak  area  ratio  r obs  as  a  function  of  peak  area  ratio  r exp  expected  from 

composition of the adamantane/ammonium dihydrogenphosphate mixture (see Table 1) by 1H MAS 

NMR;  filled circles and squares denote data from spin-echo and SPE experiments at a sample 

spinning speed of 25 kHz recorded at a magnetic field of 4.7 T, respectively (case I and III, see 

text); empty circles are data from spin-echo experiments at a sample spinning frequency of 65 kHz 

recorded at a magnetic field of 14.1 T(case II); repeated analysis was performed for individual data 

points including the full protocol from weighing of the samples to a deconvolution of the peak 

intensities; the observed standard deviations (r = 1.11, case I: 7%, case II 6%) are in line with the 

scatter of the data points observed above.
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