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Abstract

An new embedded cluster methoelk{ended embedded ion meth&EIM) for the
calculation of NMR properties in non-conducting crystalpresented. It is similar to
the Embedded lon Method (EIM)n the way of embedding the quantum chemically
treated part in an exact, self-consistent Madelung p@kriut requires no empirical
parameters. The method is put in relation to already exgjstinster models which are
classified in a brief review. The influence of the cluster ltarg and the cluster charge
is investigated, which leads to a better understanding fadidacies in EIM. A recipe
for an improved semi-automated cluster setup is proposechvatiows the treatment
of crystals composed of highly charged ions and covalentaorés. EIM and EEIM
results forF and®!P shielding tensors in NaF and in four different magnesiumsph
phates are compared with experimental values from solié $#AS NMR, some of
which are measured here for the first time. The quantum pdheotlusters is treated
at hybride DFT level (mPW1PW) with atomic basis sets up to 6&Btif,3pd). The
improved agreement of EEIM allows new signal assignmentghi® different P-sites
in Mg,P,04,, a-Mg,P,0O; and MgROy;. Conversion equations of the type= A+B-6
between calculated absolute magnetic shieldingad the corresponding experimen-
tal chemical shift®> are obtained independently from linear regressions ofspbbt
isotropically averaged versusd values on 1§'P signals of small molecules.

Keywords: solid state magic angle spinning NMR, magnesium phosphates-
tum chemical calculations, hybride density functionalottye self-consistent cluster
embedding scheme, point charges, lattice potential, Madgbotential, chemical shift
anisotropy
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1 Introduction

Nuclear magnetic resonance (NMR) spectroscopy is one of th& powerful ex-
perimental techniques for the elucidation of the structafrehemical compounds in
various states of aggregation. In recent years, extensbgggss has been achieved es-
pecially in the field of solid state NMR spectroscopy. In piple, information about
connectivities, atomic distancgsond angle$and dihedral angléscan be extracted
from solid state NMR data, which motivated the idea of a NMRstallography.
But rather than thinking of a replacement for establishedydiffraction techniques
NMR should be regarded as a complementary tool which posselke outstanding
feature that it probes the sample locally with unequalediugi®n power. This makes
the method applicable to disordered and amorphous sabds\¥hile it is known that
tiny changes in the local environment of an observed nuatause significant shifts
of its resonance frequency, its prediction and understanalie often not straight for-
ward. For this reason empirical correlations deduced fralotes of assigned experi-
mental spectra are very import&rit In many cases no comparable data are available
or it seems that simple relations do not eigkn extremely useful tool to fill this gap
consists in accurate quantum chemical calculations of NktRgrties from first prin-
ciples, which give an immediate relationship to the strigetwithout the necessity of
relying on empirical parameters. This allows the assigrimENMR signals to atomic
sites in uncommon or difficult cases, leads to a deeper iheigimpirical correlations
and allows to predict spectra for different structural msde

While semiquantitative calculations of NMR properties aiely routine for ordi-
nary small molecules in the gas phase nowadlay® situation is not so favorable for
ionic solids where far distant Coulomb interactions aregmeand the number of inde-
pendent particles, i.e. the system size, is usually muahenidl he effect of Coulomb
interactions on NMR shielding tensoscan be sizeable, especially for highly po-
larizable systems. Two basic routes have been proposetidacaiculation of5 in
crystalline solids. The first takes full account of the ttatisnal crystal symmetry at
guantum mechanical level and ugesriodic boundary conditiont obtain the elec-
tronic wave functiof®. The second is based orcluster modelling ansatz

In the last few years periodic boundary calculations hawoitre popular in the
solid state NMR community, because two quantum chemicatsddve been made
available to the public, namely the CPMD progranwith the NMR specific ex-
tensions by Sebastiani, Parinello and oth&end the CASTEP or PARATEC pro-
gramt314 with the GIPAW extension by Mauri, Pickard and othé€rS. Impressive
correlations between experimental and simulated shigltknsor components have
shown that the predictive power of theoretical calculatibas reached the precision
necessary for practical applications. Still some probleemsain which, we believe,
are inherent to the underlying approximations and mettaggolIn general, periodic
boundary calculations are expensive for big unit cellsgose the entire cell is treated
guantum mechanically. In a recent paper the current limmitPAW is specified to
around 900 electrons per unit c€ll which is reached quickly for larger cells con-
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taining heavy atoms. A second issue is the description o&atbmic core region by
pseudo-potentials. Since the biggest contribution to thHRNhielding tensor comes
from electrons close to the observed nucleus, any approximto the core region is
a delicate issu€'*® The GIPAW approach solves the core problem to some extend
by restoring an all-electron description in the core rediahcomes at additional ex-
pense. Under this perspective calculations followingdiuster modelling ansatare
an interesting alternative, because they can exploit tted ltature of NMR properties.

The aim of this article is to show how increased benefit camkert from the clus-
ter approach in NMR shielding tensor calculations on ctistasolids. To this end
we review advantages and disadvantages of different clumementations in sec-
tion 2. In section 3 we present a new cluster model, which sedan the Embedded
lon Method (EIM) by Stueber, Grant and oth&t$?%. The EIM is one of the more
advanced cluster models available at the time and — in csiritravhat its name might
suggest — also applicable to uncharged quantum clidstéfaking the simple system
sodium fluoride (NaF) as an example we demonstrate that ptuadedifficulties of
EIM appear in the choice of charges attributed to the quardiuster as well as to
point charges building up the embedding electrostatic.fidloreover, the influence of
the cluster boundary is investigated. This leads to thevalon of detailed prescrip-
tions for the construction of improved clusters. Togethi whe realization of a semi-
automated cluster construction procedure this gives oisghiat we call the Extended
Embedded lon Method (EEIM). Finally, we validate the EEIMiahe EIM against
a set of experimentdlP chemical shift tensor components of magnesium phosphates
(M92P4Olz, Mg3PO4, O(-Mgzp207, and MgHOH) in section 6.

2 Overview of existing cluster models

A review of cluster modelling schemes has been publisheent8é?. Most of the
works cited therein are focussed on the optimization ofcsétines. Cluster calcula-
tions with focus on NMR properties have been reviewed idnmentioned in either
review are the referencé$-3'that we found to be important in connection with our
work. Here, we want to work out a systematic classificatiodifiérent schemes with
emphasis on NMR.

The basic idea of cluster modelling is to cut the relevanioreg@the cluster) con-
taining the nuclei of interest out of the solid and to perfamon-periodic, molecular
calculation on it. The main advantages of cluster calontatiover periodic calcula-
tions are

Al. their low computational cost. A clustansatzbenefits from the fact that NMR
properties are rather local quantities, which leads talirsealing behavior with
respect to the unit cell size.

A2. the general availability of a larger number of non-pdrioquantum chemical
programs capable of doing NMR calculations, g8 (In contrast there are
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only the few periodic programs mentioned in the introdutfio
and apart from these economical aspects

A3. alarger variety of quantum chemical models. For exarapj#icitly correlated
ab initio methods necessary for systems with static electron ctioe?s® or
explicitly relativistic methods for systems with heavy ti@re availablé®.

A4. a larger variety of implemented properties, as for exantpe calculation of
indirect nuclear spin-spin couplings at different levelsaphistication which is
available in several packagés36:41.42 1

A5. the easily achievable modelling of non-ideal crystaithwefects or impurities
The disadvantages of cluster calculations are

D1. the neglect of the translational symmetry of the wavefiom and often also the
loss of local (point group) symmetry of the nuclei under stigation

D2. the approximate treatment or even full neglect of lonmgyeainteractions

D3. the lack of proper boundary conditions/constraints.gs the correct charge of
the system

D4. the large number of parameters that needs to be set, subbk aluster size (vs
expense), the cluster charge, the choice of atomic basttifuns, the quantum
chemical model and the way of cluster embedding.

Despite of the basic deficiencies the results obtained fioister calculations can be
surprisingly good, because NMR properties are local qtiastin the sense that the
main contributions are determined by the electronic wawetion in a restricted region
around the nuclei of interest. This has been recognizeddyren early calculations
of NMR parameter¥—* and was verified later for a number of model systétri
Further theoretical foundation of the local approximati®given in section 1 of the
supplemental material.

The quality of the results depends critically on the clusttup. In the following
we propose a classification scheme for the many types okclaatculations that have
been presented in the past. It may be used as a rough estionates fquality of a
cluster calculation. A graphical overview is given in Fig. 1

t In fact this property has been recently incorporated in @p&r code using a super-cell technidde
The reported computational resources for extended sysiesrguite considerable, however.
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Figure 1. Tree diagram for types of cluster calculations. Acronymd aariables are
explained in the text. Unconnected arrows marked by a s}amdtcate that
the branch continues in the same way as the neighboringloranc

Two prototypes of cluster calculations can be distingudsHée first type ar@on-
embedded cluster calculationshere all atoms inside the cluster are treated quantum
mechanically (at the same level) and all remaining atomb®&blid are ignored, see
e.g.”. Obviously, long range interactions are disregarded mapproximation. While
this might be acceptable for magnetic shielding calcutegtion non-polar molecular
crystals, it is not sufficient for ionic systems, where loagge coulomb interactions
have proven to be importaift*®>3 In such cases the achievable size of the quantum
cluster (QC) is usually too small to arrive at converged itssul

The second type armbedded cluster calculationslere, long range interactions
are approximated electrostatically by embedding the QQiiaraay of point charges
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{9;(x))}, 7 = 1,2,... M, which mimic the effect of atoms outside the QC by adding a
potential

V(r) = Z ﬂ with 7; = [t — 1] (1)
]*EQC

at a pointr; in the quantum region. Several recipes have been given éodéter-
mination of the numbeM of point charges, their magnitudg, and their location
r; 1924293455 The g, are not necessarily identical to atomic charges and theidosa
r; do not necessarily coincide with nuclear positith€©n the one hand, the identifi-
cation as a classical substitute for an atomic site in aalysappealing, because each
point charge has a concrete meaning then. On the other hanfirite number of
point charges would have to be generated around the QC andetiacccording to (1)
in order to represent an ideal crystal, which is impossibleractice.

At this point the embedded cluster calculations split irttfar subclasses: Some
schemes simply truncate the array of atomic point chargg®wi further modification
at some distance of the G263031 Since the direct-space summation of (1) converges
only slowly with growingM, considerable errors can océti?®>’ This becomes man-
ifest in an oscillatory behavior of the chemical shift temsigenvalues at various levels
of truncation, which in case 6P amount tox1 ppm even for large clusters ffi (see
Fig. 4c of that work).

In more advanced scheni@84°6this uncertainty is removed with moderately in-
creased computational effort by performingEwald summatio??, which allows the
virtually exact calculation of the electrostatic potehfia an ideal ionic crystal. There-
fore, the presence of the QC is ignored for a moment soahattomic sites of the
crystal are represented by point charges. Then, (1) can\rétesn as

N
v =y Y-, )

where index;j runs over the\ atomic sites in a unit cell (UC), the direct-space grid
indexn = (ny,n2,n3),1n; € 7Z points to all possible unit cells ang, = |r;;.| is the
distance betweer and the location of atorin the UC with indexn. The prime be-
hind the sum symbol indicates that terms where r; have to be dropped. According
to Ewald eq. (2) can be decomposed in two parts, one sumngttibim direct space
primarily accounting for near distant charges (first terni3)) and one summation in
reciprocal space, primarily for far distant charges (seddenm in (3))

VEwata (i) Z Z erfe( T]”z]n) +

jelC n rl]n
N
1 ex (_[nfm/ ]2)
= Z in : P2 L - cos(27tem - Tijo) (3)
Tt jEUC m+#0 m
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wherem = (m;, m,, ms) is the reciprocal grid index € (0, 1) the Ewald convergence
parameter, V the unit cell volume, anfl, the position vector in reciprocal space. Like
the direct sum in (2) the Ewald sum in (3) is infinite, i, n — (oo, o0, c0), but it
converges quickly when andm are simultaneously increased. The implementations
in1%%usen = 0.2, n,,, = (8,8,8) andm,,, = (5,5, 5) to reach converged results.

Once, the exact Ewald potentit},,.,;.;(r;) is obtained according to (3) it has to be
incorporated in the quantum mechanical electronic strecfQM) calculation. Cur-
rently available QM software cannot handle scalar potefiglds directly, but a re-
stricted number of point charges, only. Therefor, a fittinggedure is used to vary a
finite set of point chargeg; ps with the potentialV/ps(r;) (subscriptDS indicates that
a direct summation according to (1) is feasible) so thatataduces/ ks in the QC
region in an optimal sense, i.e. it minimizes the root mearasgdeviation

N, 1/2

Arms = Z [VEwald(ri) - VDS(ri)]2 /Nr (4)

1
Different strategies have been devised for the choice otlieek points; and their
numberN, 225455 |t seems that each strategy leads to satisfactory (=cgesigresults
provided that the check points are reasonably distributed the QC region and that
N, is sufficiently large. In the algorithm of Klintenbeeg al.>> check points are located
at all nuclear positions in a sphere containing the QC regimzhadditionally at a larger
number ¢1000) of randomly chosen points in the QC region. Each rangpaimnt falls
in the union of spherical shells with an inner and outer radi0.1 and 2.3\ centered
at each non-randomly chosen point or previously choseroramubints.

Different schemes have also been suggested for the detdromrof the number
and the position of the fitting point chargggs. The schemes presentedif°seem to
be equally suitable because a converyed(r;) in the QC region can be obtained with
both of them when the number of fitting charges is sufficiefdhge. Klintenbergs
algorithm offers the advantage that it keeps the pictureonfitpcharges as classical
substitute for atomic sites. This is achieved (dylocating fitting charges only at
nuclear positions(ii) freezing the fitting charges near to the QC to the ideal atomic
charge values of the infinite crystal, afid) fitting the remaining charges under the
constraint of a minimum norm solution, i.e. with as less d#@gn from ideal charges
as possible.

More significant differences appear in the choice of atorhiarge valueg; at-
tributed to the crystalline sites in (3). It should be noteddvance that atomic charges
in molecules or crystals are no quantum mechanical obsesjako that each quan-
tification is related to an underlying model. In other wortli&re is no 'true’ atomic
charge that can be assigned tg;and all choices are somewhat arbitrary. Even if a
set of charges was available that created the quantum mealymexact electrostatic
potentiaP®, the electrostatic approximation in the embedded clustsatzi.e. the ne-
glect of exchange and correlation interactions, wouldlgtédvent an exact description

1 defines the relative weight of the direct space to the recgirspace sum
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of the quantum system. Nevertheless, a few comments can dée omethe usefulness
of certain choices fog; which have been used in the past:

1. Formal oxidation number82°:54558qor Evjen charged-®'-%3as a variant of for-
mal atomic charges) are easy to deternan@iori. Their usage is inadvisable,
however, as the potential resulting from such charges iscimate®. All tools
for wave function analysis indicate that formal charges tedargely exaggerate
the charge separation in ionic systems.

2. Parametrized atomic chargés e.g. those from molecular mechanics (MM)
force fields, certainly pose an improvement over formal att@h numbers, but
have the drawback that they must be determined in advanagtable reference
systems. Formally, empirical parameters are introducdtercluster calcula-
tion.

3. Mulliken charge$® are one of the simplest methods to transfer results of a wave
function analysis to embedding charges and have been ugedn®. The draw-
back of Mulliken charges ar@) the equal partitioning of atomic overlap popu-
lations, which is problematic for ionic systeng) the neglect of intra-atomic
charge distribution, anglii) the large basis set dependence which is especially
problematic for extended or unbalanced basis®8efBhe basis set dependence
is inherent to all basis set related methods of wave funaralysis, but can be
significantly reduced (see next item).

4. NBO charge®® are obtained from aatural population analysigNPA) which
belongs to the class of basis set related methods, too, bwsslnnumber of im-
provements over Mullikens analysis. NPA takes place in #momormal, natural
atomic orbital set (NAO) which avoids the partitioning pledn of overlap pop-
ulations and reduces the basis set dependence significRopulation analyses
based on similar ideas have already been presented inremodiks®’—°. The
computational effort to obtain NBO charges is moderate. \tfilse properties
NBO charges seem to be a good choice for embedded clustetataing in
ionic systems, where the AO basis is often unbalanced. NB@ebkdave been
used in the EIM approach

5. ESP derived chargeare designed to mimic the quantum mechanically exact
molecular electrostatic potential (ESPat certain check pointg in space as
closely as possible. ESP charges depend on the chogeaf which a num-
ber of different selection schemes have been prop@s&din all the schemes
the check points are placed “outside of the molecule”, nisaran-der Waals
surface. The computational effort for ESP charges is ugnatiderate.

Although ESP charges seem to be ideally suited for the reptaon of an elec-
trostatic embedding potential there are a few well knowrbfgnms™: (i) ESP
charges are highly sensitive to the molecular conformatioh ESP charges
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from early implementations are not rotationally invaridni.e. they depend
on the orientation of the molecule in the coordinate syst@im,ESP charges
of atoms buried in the inner part of the cluster cannot berdeted unam-
biguously in many cases because the fitting procedure inrglisestatistically
under-determined and the larger the molecule is the fewargels can be as-
signed validly. ESP (ChelpG) and NBO charges were comparezgldat amino
acids irf®. Similar charge values and nearly identical NMR shieldiegsbrs
were reported in most cases.

6. AIM charge$® are appealing because of their physically motivated dafimit
However, their calculation is computationally rather exgee. To our knowl-
edge AIM charges have not been used in cluster calculatioh8MR properties
so far.

The methods described in 3-6 can be usedself-containedcluster calculations,
where atomic charges obtained from a population analysisarQC are transferred
to the embedding point charge arfdy In this way ana priori parametrization pro-
cedure for the point charges can be avoided. It should bed=resl that, in return,
a change in the environment will usually have an effect onithee function and the
population analysis. This mutual dependency is solvedén&iM approach’ by an
SCF procedure for the embedding chargegd infra).

Another parameter of embedded cluster calculations igtla@tum cluster charge
doc, i.e. the sum of nuclear and electronic charges in the Q@mnegiven in multiples
of the proton charge In our opiniorggc should be clearly distinguished from the total
system chargey,, defined byjoc plus the sum of embedding point charggs: fixes
the amount of electrons in the QC region and is usually riestdato integer values that
allow closed-shell NMR calculationg,,; may take any value and is restricted only by
the requirement that the charge array should produce amagedawald potential in
the QC region.

Surprisingly little effort has been put on the determinatad propergocs so far,
although this parameter certainly plays an important role importance is indirectly
shown in Fig. 2 of*4, which indicates that the error of the lattice potentialderelated
with goc. In the pastjoc was derived almost exclusivélfrom the sum of formal oxi-
dation numbers of the constituent QC atdft8:29:54.6263.7/Thjs |ed to highly charged
QCs in some cases, lifMgoOsMg:6]3** in 77 or [NiOg]'%~ in 3. We like to em-
phasize that QC charges derived in this way must be regasié@thdequate in the
same way as formal charges are inadequate for represetaimgcgoint charges (see
above). It seems that most workers intuitively avoided lgigks by a different cluster
construction. However, lowegcs were accepted in nearly all previous works. &Qr
there seems to be a broader agreement that it should b&2&£62°6263 To the best

t An exception is described i1, where the charge of[TiOs] cluster has been reduced from the formal
value -6 to —4. The latter value was motivated by the sum of Mulliken atoctiarges £ —4.147)
determined in a periodic calculation and by the requireréatclosed shell calculation.
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of our knowledge there are no systematic investigationsomwggc andg;,; influence
the quality of calculated NMR parameters.

As last criterion for a classification of embedded clustethods we mention the
modelling of the QC boundary regionn the simplest setup no special care is taken
about the boundary so that QC and point charges are in imbeeskésghborhoot?.
The abrupt transition is problematic, however. While thetetestatic approximation
is acceptable for long distant interactions, sa§A for non-bonded atoni?, it breaks
down at smaller distances where quantum effects like cherbanding and Pauli re-
pulsion between electrons take place. Yudaebal. demonstrated that point charges
at the boundary can lead to a significant, unwanted distodfdhe QC electron den-
sity’’. The effect is especially pronounced when easily polatizabions represented
by diffuse basis functions in the QC adjoin to positive paiharges in the embed-
ding array. An improved description of the ESP at near dctarwas achieved by
expanding the point charge to a charge distribution or poikis’>?"8"? Further im-
provement can be achieved, in principle, by replacing thetpbarges at the boundary
with suitable total ion model potentials (TIMPs) that accbalso for effects of cova-
lent bonding and cluster/environment orthogonaff#>’/ The TIMPs have to be
adapted to the individual bonding situation, however.

Another possibility to account for covalent bonding at thé Rbundary is to satu-
rate the dangling bonds with monovalent atoms (usuallydryein). The technique has
frequently been used in QM/MM and ONIOM approacié$even though not specif-
ically with respect to NMR property calculations in ioniclisg. Several aspects of
this strategy are problemati@) a systematic improvement is difficult as the saturated
QC formally describes a new quantum system with wrong coitipos(ii) the charge
array has to be modified near the positions where the monuvatiems are added but
there is currently no well-grounded recipe how this can beed@ii) the positioning
of the monovalent atoms is unclear. Empirical rules are liysudroduced which is
unsatisfactory from a theoretical point of view.

Finally, frozen localized orbitals placed at the QC bougdinat are excluded from
the SCF procedure, are another possibility to approximatalent bonding in the cut-
off region®?®3, Like the TIMP and the dangling bond saturation schemesbpsoach
is not self-contained and introduces additional empirgaiameters that have to be
determinedh priori.

The probably best but most expensive option is to increaseltister size so that
the boundary will be shifted farther away from the nucleirgérest. This strategy has
been pursued in the EIM/cluster appro&thLocal approximation methods may be
introduced to reduce the computational effort for growing §izes$*.

A medium course between cluster expansion, local apprd}mand effective
embedding potential was presented recently withfibeen-density embedditigDE)
method adapted for NMR calculations by Jacob and Vis$éhathere NMR shield-
ings are calculated in a subsystem within the QC. The ideantitipaing the QC in
further subsystems and keeping the density in parts of theed thas already been
used in earlier calculations on other properties®saad references cited therein.
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In our overview we left out general aspects of NMR calculagi@n molecules
such as the choice of the quantum chemical model, the typeeobasis set and the
choice of gauge for the magnetic shielding calculation. digat reviews are avail-
able on these topié$’. It is widely accepted now that reliable calculations of NMR
parameters require inclusion of electron correlation dsaseextended basis sets of at
least valence triplé-quality plus polarization functions. Diffuse functiongarsually
unnecessary in solid state calculations because eachssaurounded by other atoms
which provide additional basis functions. The choice ofgguorigins by the GIAO
method® has proven to be satisfactory while being comparably easyptement for
various quantum chemical models.

3 Systematic improvement of a cluster approach

For improved cluster calculations we must eliminate thedlisntages D1-D4 enu-
merated above as far as possible, while preserving the th@81A1-A5. Nothing
can be done to fix the translational symmetry loss (D1), sihiseis the nature of the
cluster approach. In many cases it is beneficial howeverdsgove local symmetry el-
ements near the nucleus of interest, because they can ribdumemputational expense
or restrict the shielding tensor orientation. ConcerningviZ2prefer an approximate
treatment over a complete neglect of long range interastismhich is a compromise
between accuracy and expense of the calculation. Concednge can improve the
boundary conditions by requiring certain conditions (sekWw) for a properly cho-
sen cluster. Looking at our classification scheme in Fig. Timekthat following the
branches on the right side lead to more satisfactory redtittally, concerning D4 we
suggest a systematic way for the cluster generation andderoecessary tools for an
automatized setup.

Most NMR cluster calculations presented in the past sufféeast from one of
the disadvantages D2-D4 and could be improved at modedicaddiexpense. In
the Embedded lon Method (EIM) and the EIM/cluster methocetgyed by Stueber,
Grant and others'®2%a major step is taken towards an improved description of long
range interactions (i.e. curing D2) by performingeamald summationf NBO or ESP
charges. Therefore we took this method as a starting poiotiowvork. The heart of
the EIM and EIM/cluster approaches is a SCF procedure forii@edding charges
which we adopt with modifications that are described in sec8.1. In section 3.3
we use exemplary calculations on NaF to demonstrate thécsimaings of EIM with
respect to D3 and D4. We make proposals how these can be auaéteast reduced.
To distinguish the traditional EIM from the modified versie will call the latter the
extended embedded ion met{&EIM).

11
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3.1 SCF procedurefor embedding charges (EIM)

The Embedded lon Method (EIM) combines high-level caldatet of a QC including
the nuclei of interest with an embedding of the QC in an exsadf;consistent, purely
classical electrostatic potential of the crystal field. Bxpensive part in EIM calcu-
lations is usually the QM part, whereas the derivation ofdaleetrostatic potential is
relatively cheap. A flow chart of our implementation is giverfFig. 2.

initial steps goint-charge-SCF loop NMR calculation

EWALD EWALD

!
adapt site
charges

extract IS
fragment g I

g - yes replace point
Q replace point charges in QC

_ 2 charges in QC with atoms

Inlt.lal guess = with atoms atomic charges T

for site charges O I self-consistent ?

s} QM calc.

QM calc.

population
analysis

l NMR
Properties
Figure 2: Flowchart of the (E)EIM procedure. (UC: unit cell, QC: quantaluster,
q"): vector of atomic site charges inth loop cycle,g(: charges of em-

bedding arrang():: atomic charges in QC from population analysis.)

The implementation in this work was made independently ftbm earlier one
reported by Stuebeat al.l®. The functionalities of the two implementations are very
similar, with the main difference occurring in the initidéps. We therefore give only
a short description here, introduce the important inpudipeaters and mention specific
modifications.

In the initial steps a suitable fragment of the crystal issgroas QC and a charge
goc has to be assigned to it. While the traditional sch&€tpeoceeds with an electronic
structure calculation on the non-embedded QC in order @imhn initial set of atomic
site chargesqi..), we prefer a simple initial guess fqg. at the beginning, so that the
first QM calculation is already performed on an embedded QCb®lleve that this
adds more robustness to the scheme, as we observed comeepgehlems in several
electronic structure calculations on non-embedded QCsreaeno problems were
present when the same QCs were embetidetbreover, making a reasonable guess
instead of an initial QM calculation reduces the computsticeffort. By default we
use formal atomic charges for the initial site charges. mribxt step we enter the

* In this work we leave out the partial structure optimizasiatescribed for non-embedded QC$°%n
Partial optimizations can also be performed in the presefpeint charge$', but special precautions
have to be met in order to make them reasonable.
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point-charge-SCF loop (see Fig. 2, not to be confused wittfStOE procedure in the
electronic structure calculation).

From the unit cell definition and the atomic site charges thalEb> program cre-
ates a finite point charge array,,, that mimics the lattice potential of an ideal (in-
finitely extended) crystal in a region enclosing the QC. Thegpam is based on the
code of Klintenberget al.>> with modifications similar to those describedin

Figure 3: Definition of the three zones in the (E)EIM procedure.

The finite point charge array is composed of three disjoinesas shown in Fig. 3.
Assume the QC consists bfpc atoms. Zone 1 is a spherical volume with the minimal
radiusR; around the origin (0,0,0) that contains all QC atoms. Thelwnof atoms in
zone 1isN; > Ngc and typically amounts te 102. R; andN; are determined through
the QC definition. Zone 2 is a spherical shell around zone lagong N, atoms
(typically, ~ 10>-10%). A lower bound ofN; + N, has to be given as input parameter.
Since all atoms with equal distance from the origin shoulddt@ered in the same zone
the actualN, is determined by the next higher number in a spherical skpk®sion
that fulfills this criterion.R, is the final outer radius of zone 2. The atoms of zones 1
and 2 are described by unaltered input charges. Zone 3 isafigbepiped enclosing
zone 2 and is generated by replicating the unit cell at ()9,@imes along the positive
and negative direction of crystallographic asisN, times along+b, and N, times
along=+c (N,, N, N, ~ 6, typically). If Ny is the number of atoms per unit cell, zone
3 containsN3 = (2N, X 2N, X 2N,) X Nyc — N, — N; atoms (typically~ 10°). The
atoms of zone 3 are substituted by fittable charges in orderinac the exact lattice
potential in zone 1 and 2. The direct sum potential of the fochiarge array is

Vps(r;) = Z,j—] with j € zones 1, 2, 3 (5)
" 1]
j

Each zone 3 charge may be varied independently. The fittingegiure minimizes
Ays defined in eq. 4 under the following constrain{g:the total charge;,; must be

13
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zero,(ii) the dipole moment of the point charge array must be Z@noamong various
sets of zone 3 charges that might minimi¥g,; under the previous constraints the one
is chosen where the sum of charge deviations from the canespg input charges is
minimal (“minimum norm solution”). The set of checkpointsat which the potential

is calculated consists of all atomic positions in zone 1 aas @ell as a number &¥,,
randomly chosen interstitial points in zoneN,, has to be given as input parameter
and is typically chosen two to four time$; + N,. In a first step the exact Ewald
potential according to eq. 3 is calculated at ffe= N; + N, + N,,, checkpoints.
Then, the charge fitting is performed by solving the systeN,0f 4 linear equations
defined ir?® (equations 6 to 10). At this step we improved the programieffity by
replacing the default solver routimigel sx from the LAPACK library?® by vendor
specific, CPU optimized implementatio$. The final charge array is considered as
a reasonable approximation to the lattice potential,if, < 10uV 2°, and if the fitted
charges vary by less th@nl from the charges in zone 1 and 2.

The optimized point charge array,,, is written to a file with an appropriate input
format for the subsequent electronic structure calcutatibhe charge points in the
QC region are replaced by quantum mechanically defined atomsisting of a nu-
cleus and electrons in orbitals. In principle, any eledt@tructure program may be
used tha(i) can do SCF calculations in presence of a large number of pbarges,
(ii) is able to do a reasonable population analysis(@ndis able to calculate the de-
sired NMR parameters. In this work theaGssiAN 03 package was used. Typically,
we employ a hybride DFT model and tripleAO basis sets with multiple sets of po-
larization functions. Atomic charges within the Q§gc, are determined by NBO
population analysis.

Resulting NBO charge%%i of thei-th atom in then-th point-charge-SCF cycle

are compared with the NBO chargéé;? of the previous cycleMrn : ) ; qg’():,l. = goc)-
In our definition self-consistency of the point charges isiemed when

€ = lqpe; = Goc, | < 107 for all i (6)
in units of the proton chargg= 1.602 x 10-?C). This convergence criterion is stricter
than the one given #Y; in contrast to former investigations on the charge coremcg
we optimizeall site charges in this work and we therefore wanted to minirtiize
error from this source as far as possible. If self-consistés not achieved the NBO
charges are transferred to the atomic site charges (inp&viaLD) and the next SCF
cycle is performed. If the convergence criterion is fulfili@usually happens in less
than 15 cycles) the program exits the point-charge-SCF logates the final point
charge array by an additionaMALD run and performs the NMR calculation using
the GIAO method®.

14
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3.2 Problemsof the EIM approach

In the past the EIM was mainly applied to organic compoundk vélatively low ion
charges. In the following we will enumerate some conceptigdiiciencies or open
guestions of the EIM that gain importance when typical iamig compounds with
highly charged ions are involved. We will show how these fgots can be avoided or
reduced.

1. Dependency on formal charges. It is clear (cf. section 2) that formal atomic
charges should be avoided in embedded cluster calculafidgresEIM does not
follow this guideline strictly. Although NBO charges are dder charge par-
titioning within the QC, the total QC charge itself is stilltdemineda priori
by summing up the formal charges of the constituent atoms:eber, formal
charges are assigned to crystallographic sites that havepnesentative in the
QC'%2 All this can lead to methodological inconsistencies ad a&to a pro-
nounced charge mismatch, especially in the treatment dhhaharged ions.

2. Lack of generality. An important aspect of the EIM or EIM/cluster approach,
which —to our knowledge — has not been discussed in detadrscsfthe trans-
fer of the NBO charges to the embedding charges (step “ad@ptlsarges”,
qgg” — q in Fig. 2). In the following we show that a consistent transfe

implies a restricted choice of QCs.

Let us assume a scenario where a certain crystallograpieiasspresent for
multiple times in the QC. Because a symmetry loss can occueigltister ap-
proach, population analysis can yield different atomicrgha for that site. It is
then unclear which of the charges should be transferreceterttbedding field.
Selecting one of the charges arbitrarily will in generadiéa the unreasonable
result that the total unit cell charge and the total embeglfigld charge is un-
equal zero. Without extension the EIM is strictly only applle to QCs which
contain each crystallographic site at most for one time.

Furthermore, it has been claimed that the traditional EIMEGVI/cluster ap-
proach cannot be applied to crystals composed of covalamtonkst. This

comes from the requirement that the QC has to be a finite,alsisell molecule
with integer charge calculated from the atomic formal ckarg

3. Lack of systematic improvement. The traditional EIM approach defined the
QC as the molecule containing the nuclei of interest, i.et@konly covalently
bound atoms like the complex anions'i42% This definition left no space for
systematic improvements. In order to obtain more accueselts the QC has
to be extended and the electrostatically treated part neuseduced. The ad-
vantage of an extended QC has been recognized in the ElNgclaigproack
but the composition of the QCs still seems not well formaliz€dom a fun-
damental point of view, a systematic improvement of theteluapproach can
only be achieved, when the QC adapts more and more the chastics of a
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macroscopic crystal. Of course this cannot be used as aqaaativice, but at
least we can try to incorporate certain boundary condittbasdefine a crystal,
such as charge neutrality, at every stage of our approxamati

The effect of the deficiencies is demonstrated with a few Brgalculations: We cal-
culate thé’F chemical shift parameters of solid sodium fluoride (NaR)BW1PW/6-
31G(d,p) level with non-embedded cluster, EIM and EIM/tdugalculations. Details
of the conversion from the absolute shielding scale to tleedbal shift scale are given
in section 4. Good results should be near the experimerilaaéyé;zf = 221 ppm®3

andéﬁ.so = 0ppm. The latter value results from the fact that the fluoritzars are
located onO;, symmetric sites in an ideal NaF crystal Several QCs that may be
chosen are shown in Fig. 4.

1+ 0

1—

Snon-embedded —284.6 ppm Onon-embedded™ —213.6 PPM  Onon-embedded™ —226.1 ppm
Opm = —284.6 ppm 6EIM/cluster = —208.8 ppm 6EEIM =-223.5 ppm

(2 (b) ()
0

1—

6non-embedded: -221.9 ppm 6non-embedded: 405.0 ppm
6EEIM =-2213 ppm 6EIM/cluster =-227.2 ppm
(d) (e)

Figure 4: Choices of quantum clusters for (E)EIM calculations of tfé shielding
tensor in sodium fluoride. Fluorine atoms drawn in greenjwsodn cyan.
(@) F, (b) [NayFi3]", (c) [NaisFis], (d) [NawFe:1", (€) [Na2Fes]'~. The
given chemical shifts always refer to the Rucleus closest to the center of
the corresponding cluster.
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The first QC (Fig. 4a) consists of a single fluorine anion ofilyis choice follows
the guidelines of the classical EIM, in which the bare angohosen as QC. The QC
chargegqc is fixed to—1 according the formal charge of FOnce fixed, the EIM does
not altergoc any more, but merely redistributes partial charges betwkeratoms
within the QC. This has no effect in case of a single atom amkdieall parameters of
this EIM calculation are determined by formal charges: Arghaof—1 is transferred
to the embedding point charges at fluorine sites and a chérgkis assigned to the Na
sites in order to achieve charge neutrality. The resultil\ &hift 6225 = —284.6 ppm
is significantly smaller than the experimental value andsdus differ from the value
of the corresponding non-embedded calculation. Obviotisé/too strong shielding
results from an excess of electron density in the QC thataalp@ removed by the
embedding charge field.

The second QC[Naj4F3]*, Fig. 4b) seems to represent a possible choice for an
EIM/cluster calculation.goc=+1 is again obtained from formal charges. However,
a consistent charge distribution with a total cluster chgrg=0 and unit cell charge
quc=0 is achieved only as long as formal charges are assumelg@tomic charges
in the QC and in the point charge array. Starting the poirtrgé-SCF loop of the EIM
leads to inconsistencies: The NBO charge of the QCs’ centedbf (-0.87) differs
from the NBO charges of the edge centered F-atoms (-0.8Masdt is unclear what
charge should be transferred to the F-sites of the pointgeharray. An analogous
problem arises for the Na-sites because of different NBOgdgsaof Na-atoms at the
face centers (0.84) and at the corners (0.93) of the QC, riagplgc Selecting any
pair of these unmodified F and Na NBO charges leads to the umgahyssultg,; # 0
andquc # 0. The latter inequality is also incompatible with the reguients of the
EWALD program. Assigning averaged site charges of the kind

—(”) — (n-1) —(n) _ n—1)
BRE ZqQC/F/ and gy, =3 ZqQCNak (7)

does not solve the problem, becauge# —jn, is obtained for this cluster, which
would yield againgc # 0. A possibility to restore charge neutrality for the unitlcel
is to define atomic charges as

=1@” -g"y and G0 =1@Gw -4 8)

This allows a pseudo EIM procedure in whigl; # 0 after the replacement step
of point charges in the QC region with atoms (see Fig. 2). heptvords, there
is a charge mismatch betwegn- (=+1) and the sum of the replaced point charges
which makes the procedure inconsistent. Nevertheles$§ prpvides an abort crite-
rion for the point-charge optimization cycle. The final pgelEIM charge amounts
to 7Y = -0.86864 = -3\ with a charge mismatch afoc — 0.86864 = 0.13136.

The calculated isotropic shift for the central F nucleus ante to—208.8 ppm. The
deshielding of 12.2 ppm with respect to the experimentalevas in parts probably

~(n
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also an effect of the electron deficiency in the 'QThe effect of the QC charge mis-
match onéif becomes more clear in the series of pseudo EIM/cluster ledilons
using[Nay4F3]%¥ QCs with different cluster chargéé= {-3, -1, +1, +3}. The results
are shown in Fig. 5 and confirm the expected trend from a sstnpNiew that posi-
tively charged QCs yield too Iarg‘iézf values (magnetic shielding too weak) whereas

negatively charged QCs yield too sm jljf (shielding too strong). As demonstrated
by the shift of[Na;4F3]°~, there is no simple (monotonic) correlation betwééand
6. in molecules, however, because the changes bidepend primarily on param-
agnetic and diamagnetic shielding contributions, whosgmtades depend in a more
complicated way on the electronic structure. In any casaigehmismatches seem to

be disadvantageous.
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Figure5: Dependency oéj:f(central F-nucleuson the cluster charg® in embedded
and non-embedded quantum clusféNs;sF;3]%. Additional data points are
given for other EIM/cluster calculations.

The charge mismatch described in the previous paragrapbecawoided by a QC
construction with equal amounts of sodium and fluorine atommssuch cases one
always obtaingoc = 0, §r = —4n, and henceyyc = 0 as well asg,y = 0. The QCs
[NajgFis]° (Fig. 4c) and[NagFg,]° (Fig. 4d) follow this guideline. The calculated
isotropic shifts for the central F-nucleus of -223.5 ppm &2iil.3 ppm, respectively,
are in excellent agreement with the experimental values Huicates that uncharged
QCs are generally a favorable choice.

t Compared to the true electron distribution in an equivatendut of the NaF crystal thiNa4Fi3]*
cluster has an electron deficiency, because formal atoraigeh are always an exaggerated description
of the true charge distribution between anions and cations.
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A drawback of[Na;sFis]° is the loss ofO, symmetry, which leads to a dipole
moment of the Q& a spurious electric field gradient (EFG) unequal to zerdat t
central F-nucleus, and a chemical shift anisotropy,pf, = —13.5 ppm. Itis clear that
no finite QC can be realized for NaF where both charge and tktehigher electrical
moment are zero. A reasonable compromise has to be met. \‘empent can be
achieved by moving the QC boundary farther away from theeugcbf interest, while
keeping the charge mismatch and the EFG smal[Ni&,F«]° the anisotropy of the
central®F nucleus reduces ,,;, = —8.1 ppm¥. O, symmetry and,,;,, = 0 ppm is
restored iMNay,Fe3]'~ (Fig. 4e). The isotropic shift of the non-embedded calénifat
shows a large deviation from the experimental valuhile 6;95 = —227.2 ppm for the
embedded calculation is acceptable.

3.3 TheExtended Embedded Ion Method (EEIM)

The problems with the traditional EIM method mentioned ia finevious section can
be avoided or reduced if the following guidelines for QC damgion are taken into
account. These constitute the EEIM.

Elimination of the charge mismatch. An improved scheme should not be based on
formal charges. This can be accomplished as follows. Iresgithe fact that atomic
charges are no observables, one exact rule for atomic chardgerdinary) crystals is
always valid: The sum of atomic charges in a unit cell (UC) i®ze

QUC=Z%=0 . 9)

ielC

The cell is generally composed of a finite number of differatamic sitesX; (j =
1,2,...N), each of which occurd/(X;) times in the UC. }(X;) is the multiplicity
of the Wyckoff symbol for the site.) The relative frequendyaosite in the UC is
fuc(X;) = M(X))/ X; M(X;) = M(X;)/Nuc. Thus, itis possible to construct a QC
with an exact charge of

QQC =0 (10)
if all different atomic sites are included with the same tieafrequency as in the UC
ch(Xj) = fuc(X]) for all ] . (11)

With such a QC, population analysis will give atomic (NBO) des forall sites
which can be transferred to the point charge array. The abergoned dilemma (sec-
tion 3.2) in the assignment of site charggs if a site is present for severat)times

t The embedding charges do not fully compensate the dipole anbm ¥ Further improvement
to Ouniso=+0.4 ppm was achieved when the flexibility of the atomic ®a#ithe cluster boundary of
[Nag,Fs2]° was reduced to a minimal CEP-4G basis. On the other hand stigewf numerous PPs in
the vicinity of the central nucleus introduces a deviatiorihe isotropic shieldingd{s;,=-216.4 ppm).

S The origin of the deviation is unclear so far but might be teddlato numerical problems due to near
orbital degeneracies.
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in a QC with broken symmetry, can be avoided by averaging thescorresponding
NBO charges.

1 n
qx; = 7 ZQQC,i . (12)

ZEX/‘

In case of large unit cells the inclusion of all sites withitleerrect relative frequency

in the QC is not viable anymore. Then, the next best diredsite group subsets of
similar atomic sites int@tomic type<,, which have an averaged atomic charge and
a joint relative frequencyatomic grouping. Several atomic types may be defined at
a time but the sets must be disjoint. The relative frequenai¢he atomic types must
be the same in the QC and the UC, otherwise eithgror g;c may deviate from
zero in the course of the EIM charge optimization. The rutesatomic grouping are
summarized in the following equations:

g, =(X;,X,...,X.} where E,NE,=0for u#v=12.. (13)

M(E,) = M(X;) + M(Xy) + ... + M(X;) (14)

fuc(Ey) = M(Ev)/[z M(E,) + Z M(X,)] whereX, ¢ &, (15)
U a

fac(E)) = fuc(Ey) A foc(Xa) = fuc(X,) forallv,a (16)

=z, = %;QQCJ N qx, = %; qoci - (17)

In this approximation atomic types and ungrouped atomes3i} are treated exactly
in the same way. Equations 16 and 17 replace the exact comslitil and 12, respec-
tively. A good choice for an atomic type is the grouping of taromore sites which
contain the same element in the same oxidation state andnmlarscoordination en-
vironment. The scheme is still independent of formal chaagel the charge mismatch
relative to the exact treatment (eq. 11) is expected to bdl.sifiaus, more compact
clusters may be constructed. An example for atomic grouipirigi=IM calculations is
given in section 6.1, where we group the two different sitgg.nd Mg2 in MgP,0;,

to the type “Mg”.

The important idea behind the previous directives is thatels a physically moti-
vated reason to prefgpc = 0in an embedded QC setup — not only=0 as advocated
in numerous works. A charged QC more likely has a bigger eharigmatch, which
is particularly disadvantageous in an EIM scheme where tisenatch is transferred
also to the embedding charges. Another advantage of an igech@®C is that it does
not interact with the embedding field via its zeroth eleeirimoment. Compared to
a charged QC this usually reduces the electrostatic irtteraenergy, and hence the
error portion that is introduced by approximating the quantmechanical with the
classical electrostatic interaction. In some cases it neynipossible to create an
uncharged QC. In order to keep the charge mismatch small veenreend to con-
struct QCs withjoc as low as possible, chosen on the basis of atomic chargesderi
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from population analysis. Without mentioning the physioaltivation above, electro-
neutral QCs were chosen already in several (but not all) BiMter calculation® 23

I mprovement of the embedding quality. Apart from restoring charge neutrality
the benefit of treating a bigger region around the nuclei @rgst on a quantum me-
chanical rather than an electrostatical level is that theripart of the QC is exposed
to an improved potential which includes also exchange aatesn. Moreover, inser-
tion of a buffer zone at the QC boundary helps to reduce thicat distortion of
the electron density induced by close contacts betweetrefecin orbitals and point
charges.

Our current strategy is to use a “locally dense basis”, ireextended set of AO
basis functions in the region where the nucleus with theldinig tensor of interest
is located and a (gradually) reduced AO expansion at fadistances. At the QC
boundary the AO expansion is usually reduced to minimal, gachbasis sets and a
PP approximation for the inner shells. The inflexibility bétminimal basis prevents
larger artificial distortions and is beneficial with respgcitomputational resources.
Locally dense bases are well established in non-embeddeR d&tulation§® 6,

Generalization to networked solids. It has been claimed that the traditional EIM
or EIM/cluster cannot be applied to crystals composed oflemt networks. In view
of the systematic expansion described above there shoutd lgeneral problem in
calculating such networks. Naturally an error is introdiaethe QC boundary where
a covalent bond has to be broken. However, if this defectistix at far distance from
the nucleus of interest, its effect on the shielding tenstbe small. In section 6.4 we
present a calculation on magnesium ultra phosphate ,8gPin which the phosphate
units are part of an infinite network. Problems are expectatwiworks with electron
delocalization, where the defect might not be localized mmoye. Saturation of the
dangling bonds with suitable terminators might give an iovpment in such cases.

Formalization of the QC construction. A fixed scheme for QC construction has
the advantage, that the quality of the calculation is detezthby few parameters and
that the results in a series of calculations are better coabp@ato each other. The
crystal structure must be known. Then, we use the followindejines:

1. A spatial originry of the QC must be chosen. Often the choicgis ry, i.e. the
position of nucleusX for which we intend to calculate the magnetic shielding
oX. If we want to obtairv for several nuclek;, X5, ... X, in one calculation we
may choose, = % Y./ rx,. In case of larger distanc@s, — rx;| one will usually
decide to split the problem in two or more separate QCs.

2. If a pointr, of higher point group symmetry is present closeitohosen in 1 one
might prefer to reassign = r, in order to create a QC with higher symmetry.

3. The locality ofo* suggests that the QC should be roughly expanded in spherical
shells aroundy. A sphere with radiu® aroundr, is filled with atomic sites.
Typically, R = 3.0—5.5 A so that the second to third coordination sphere around
X is complete.
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4. Covalent fragments formed in 3 are completed — if possibiecrder to avoid
dangling bonds in the vicinity oX. Further atoms are added in order to fulfill
equations 11 or 16 that assujgc = 0. The QC border line should be drawn
between atoms with ionic interactions, since these hasgealiesctional character
and are therefore expected to be better replaceable by tgbairge interaction.

5. The cartesian coordinates of the QC (and the fractionaidioates of the UC)
are translated so thaf = (0,0, 0). This is required by th&wal d program, see
section 3.1.

6. A guantum chemical method and a locally dense basis hdawe ¢bosen, which
are able to describe the wave function in the region of théeno€interest with
sufficient accuracy. In many cases electron correlationsée be considered.
Currently, we favor hybride DFT due to its good cost/perfang®ratio.

The creation of a locally dense AO set is based on a distantsion from

a reference point. In our implementatiok, different reference pointr,. s}

(k = 1,2,...K) may be defined simultaneously. A common choicfris} =
{rx,}. Then, M different radial shells with a shell rangg € [*minm, maxml,
(m=1,2,... M, "yaxm = Tminm+1) @re defined around eaehs. Atoms located
in the different shells form disjoint sétand for each set an AO basis definition
is given. By default the basis definition applies to all atorinthe shell, but a re-
striction to certain atom types is possible,too. Pseudopiatls can be assigned
in the same manner.

An AO set of valence tripl€: quality plus a double set of polarization functions
should be considered as minimum requirement for the innstrsteell (2 = 1),
which contains the nuclé¢iX;} of interest and usually their nearest bonding part-
ners. The use of pseudopotentials in this region should beled. For shells
with higherm the basis set quality is reduced. Compact AOs are advisable at
the QC boundary. For example, Fig. 6 shows the shell and Daisition for

the EEIM calculation on th¢Mg,P,04,];5 cluster (discussed in more detail in
section 6). The nearest distance relative to one of the fentral P atoms de-
cides upon the basis set assignment. BelowA2a06-311G(3df,3pd) basis is as-
signed, from 2.0 up to 4 X a 6-31G(d,p) basis, and for distances equal or larger
4.7A a CEP-4G basis with corresponding pseudopotentials, suepied by a
d-function for each P atom.

t If K > 1 each point in space is assigned to a specific reference paintfor which|r — 1. ¢4l = min .
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o 6-311G(3df,3pd)

9 Mg1

o CEP-4G+(d)

Figure 6: Automated assignment of AOs and PPs in spherical regionsndrdP
atoms inthe[MQQP4012]g cluster (Mg: cyan, P: magenta, O: red). Innermost
region: 6-311G(3df,3pd) basis, second region: 6-31G(agg)s, remaining
part: CEP-4G+(d) AO+PP set.

4 Computational Details

General information. The DIAMOND (ver 2.0h) prograrff was used to extract
suitable quantum clusters (QCs) from the crystal structures program permits the
filling of spherical shells around arbitrary centers anceaétic completion of cova-
lently bound fragments. QC and unit cell (UC) information xperted in fractional
coordinates to separate files. A file for the automatizedoseta locally dense basis
is created that contains reference points, radial shetldasis set definitions.

A collection of shell scripts and small Perl prograththen prepares input files for
EwALD and the electronic structure program. In a first step theitmaal coordinates
of the UC and the QC are translated in order to locate the natlaterest near the
origin. Second, the fractional QC coordinates are transéarto cartesian ones via

r fract.coord- T = Yeart.coord - (18)

The transformation matrif’ from fractional to cartesian coordinates is determined
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from the unit cell parameters b, ¢, a, B, y according t8°

a 0 0
T =| bcos(y) ( (b)sin%) o) 0 (29)
c(cos(a)—cos(p) cos

withV =a-b-c- \/1 — cos?(a) — cos?(B) — cos?(y) + 2 cos(ar) cos(B) cos(y) (20)

Third, input files for the electronic structure program aemgrated which define the
QC with a locally dense basis and the initial embedding ahdigld. The master
program for the EEIM SCF procedure shown Fig. 2 is a shell soriprder to allow
flexible user interaction on compute clusters with queusigiems.

All electronic structure calculations were performed vifih GAUSSIAN 03 pack-
age’. The hybride density functional mPW1P¥ was used throughout with tight
convergence criteria for the SCF, corresponding to maximemations in density
matrix elements of0~° and in the energy df0~® Hartree. Quadrature in the DFT cal-
culations was performed on a pruned grid of 99 radial shatiss®0 angular points per
shell on each atom. Absolute nuclear magnetic shieldingpisa were obtained with
the GIAO formalisn¥®. Atomic charges were obtained by NBO population analf4is

Calculations on NaF. The Fm3m symmetric crystal structure data was taken
from1°2 as published in the ICSD databa%e The Na-F distance amounts to 2.387
Selected clusters are shown in Fig. 4. Calculdfé&dchemical shifts are given ac-
cording to IUPAC recommendatioH$ on a scale relative to the reference compound
CFCk

_v—uv(ref) o(ref)—o

— y(ref) 1 -—o(ref)
but we used gaseous hydrogen fluoride (HF) as secondargmeter The gas-phase
structure (g(H-F)=O.9169&) was taken fron®®. The experimental gas-phase shift of
Oexp.(HF)=-221.34 ppm was reportedfif. Conversions from the absolute shielding
scale to the chemical shift scale were performed by

~o(ref)—o (21)

191: _ 191:
6calc, = Oale.

(HF) =" + 6, (HF) (22)
Calculations performed at mPW1PW/6-31G(d,p) level are géytabt accurate enough
to predict'®F shifts reliably within 1 ppm (, which is seemingly suggeishgy the pre-
sented results). As we were mainly interested in the relahifts between various
clusters the level seems to be sufficient, however.

Calculations on magnesium phosphates. Experimentally determined crystal
structure$®’~11%were used for the calculations without further structuglimization.
Clusters were constructed according to the guidelines giveaction 3.3 with locally
dense basis sets defined by radial shells around the nucigeoést (see section 3.3).
Basis functions of the 6-311G(3df,3pd) €et'*3were used for the innermost shell,
functions of the 6-31G(d,p) set—*'%for the second shell (if present) and functions of
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the CEP-4G set with pseudopotentfalsfor the third shell (if present). The CEP-4G
set of phosphorus was supplemented withfanction from the 6-31G(d,p) set (gaus-
sian exponent = 0.55,%). Calculated'P chemical shifts are given accordingtbby

eg. (21) with 85% HPQ, as reference compound. The computational treatment of this
reference is difficult, however. Therefor we assumed a tirelation between quantum
chemically calculated magnetic shieldings and experialéi® chemical shifts

O =A+B-0p (23)
The parametergl = 303.29 ppm andB = —1.1174 were determined from a least

squares fit of 23 calculated and experimental data from 19 pimasphorus molecules
that cover the wholé!P isotropic chemical shift range. The fit had a standard devi-
ation of SD = 9.56 ppm. Calculations were performed on mPW1PW level with 6-
311G(3df,3pd) basis functions at all centers. Experinntietermined molecular
structures were used in order to account for vibration&atf. Solving eq. (23) fay
gives the final expression used for the calculation of igptrahemical shifts and shift
tensor eigenvalues

a.F —303.29 ppm

631P __ iicale.

fcale. = -1.1174 '

AtmPW1PW/6-311++G(3df,3pd) level the optimized parametsneA = 302.99 ppm,

B = —1.1147 (SD = 9.88 ppm) and at mPW1PW/6-31G(d,p) levél= 371.87 ppm,

B = -1.0058 (SD = 17.25 ppm). More details on the fits are given in the supplemental
material.

i=1,2,3 (24)

5 Experimental Details

Synthesis. The educts magnesium orthophosphate octahydrate(fDy), - 8 H,O),
magnesium hydrogen phosphate trihydrate (MgklP&H,O), and diammonium hy-
drogen phosphate ((NBPHPQO,) were obtained from cfb Budenheim (Budenheim,
Germany). PO;, was obtained from Riedel-de-Ha (Seelze, Germany). Unless noted
otherwise the reactions were carried out in an operQ;¥stabilized ZrQ crucible
placed in a tube furnace with temperature sensor and exteatprogram controller.

Synthesis of a-Mg3(PO,),. a-Magnesium orthophosphate was prepared by heating
5.055 g (0.012 mole) Md@POy), - 8 H,O within 5 h to 1173 K and keeping the sample
at that temperature for 12 h. A white powder was obtained.

Synthesisof a-M@,P,O;. a-Magnesium diphosphate was prepared by heating 5.1 g
(0.029 mole) MgHP®- 3H,0 within 5 h to 1173 K. The final temperature was kept
for 4h. After cooling to room temperature a white powder waamed. Thé'P NMR
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spectrum showed impurities at -0.2 and -18.8 ppm which asigm@asd tax-Mg;(PO,),
and the high-temperature phas#g,P,O;, respectively. A weak signal is also present
at 2.1 ppm which belongs probably to an orthophosphate.

Synthesis of Mg,P,01,. Magnesium cyclotetraphosphate was prepared by heating
a mixture of 1.761 g (0.013 mole) (NMHPO, and 2.324 g (0.013 mole) MgHRO
3H,0 were ground to a fine powder. The mixture was heated withimt®d.273 K and
kept at this temperature for 5 h. A white, partly agglometgiewder was obtained
after cooling.

Small impurities of magnesium diphosphate were found ingreduct, which
appeared as signals at -13.6 and -19.7 ppaM(,P,0O;) as well as -18.7 ppmp¢
Mg,P,O,) in the 3P NMR spectrum. The impurity phases were also confirmed by
reflexes in the diffractogram. Mg,0O; is build as side product during synthesis of
Mg2P4012 via

2 MgHPO4 — M92P207 + H,0. (25)

Integration of the’'P NMR signals in the quantitative spectrum at 25 kHz gives an
estimate of less than 3 mole-% phosphorus in the impuritg@ha

Synthesisof MgP,0O,;. Magnesium ultraphosphate was prepared according to

4 MgHPO, - 3H,0 + 3 P,0;p X5 4 MgP,0y; + 14 H,0 1 (26)

A mixture of 1.1024 g (0.0063 mole) MgHRO 3H,0 and 5.9831 g (0.0211 mole)
P,O,o was put in a Au-Pd crucible. The sample was heated for 7 d ak87dter
cooling the excess of ®,, was removed by boiling the sample for 1 h in a beaker
with 100 ml water, filtering and washing the filtrate with etbh Small plates of
white, slightly grayish color remained which were dried acuum.

X-ray diffraction. Powder diffractograms were recorded on a STOE Stadi P pow-
der diffractometer (Cu-k, A=154.05 pm). All synthesized compounds and impurity
phases were identified with diffraction patterns in the SlBIPOW data basg?,

NMR. 3'P MAS NMR spectra were recorded either on a Bruker Avance |1s3@@-
trometer with a 4.7 T magnet and a commercial MAS probe fon#brotors or on a
Bruker Avance 500 DSX spectrometer (11.75 T magnet) with ceraral MAS probes
for 2.5 or 4 mm rotors. Zr@rotors were used. Chemical shifts are given relative to
the reference compound 85% P, (T=298 K) as an external standard. Calibration
of the spectrometers was done with tetramethylsilane (TMfsler MAS conditions
using the unified scale and the chemical shift definitiort‘irilTypically, spectra were
recorded by direct excitation with 9@ulses of a fewus length. Various number of
scans (up to 600) and repetition delays (up to 1024s) wektosebtain a satisfactory
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signal/noise ratio. Isotropic chemical shifts, = (611 + 022 + 633)/3 were taken di-
rectly from NMR spectra at high MAS frequenciegs, typically 25 kHz. Chemical
shift anisotropy (CSA) parameters were determined from Iglostated MAS spectra
with the procedure described fnwhere powder spectra simulated with the18sonN
program®® are fitted to experimental ones. Dipolar interactions betwihe nuclear
spins were neglected in all simulations. Simulation of arfgpin system including
direct dipolar interactions between the four nearest dist#® nuclei (distances from
crystal structure) showed that this approximation is validn for the very slow MAS
spectrum otv-Mg;(PQy),.

CSA results are given according to tHaeberlen-Mehring-Spiesonventiort?’,
i.e. in terms of the reduced anisotropy,is, = 6:4F — 6,5, and the asymmetry =
(6,2F = O5AT) [ Saniso, Where the shift tensor principal axes eigenvalblg$, 631, 635
have been sorted according [9/"" — 60l > 1057 — Oisol = 107/ — Oisol. The rms
deviation of the values is estimated+0.1 ppm ford;s,, +4 ppm ford,,:s,, and+0.04
for 1.

6 Results

In the following subsections we apply the EEIM to the caltiola of 3'P shield-
ing tensors in the crystalline compounds MgO;,, a-Mgz(PQy),, a-Mg,P,0O,, and
MgP,O;1, whose crystal structures have been describéd i Structure data and
atomic site labelling was taken from the ICSD data B&Seentries 4280, 31005,
15326, 300214, respectively. The atomic labels are usederstibsequent presen-
tation of the results. For ease and in order to avoid ambégte show the unit cells
in the supplemental material.

All compounds were resynthesized and the powdered sam@esaharacterized
by their X-ray diffraction pattern as well 82 MAS NMR spectrocopy. Experimental
3P chemical shift tensor eigenvalues were obtained fromlglotated MAS spectra.
In spite of the similarity in their chemical compositiongetfour phosphates are quite
different with respect to the chaining pattern of fP@®trahedra which allows us to
demonstrate the different strategies for the cluster cocsbn. According to the),
nomenclature introduced ' (n gives the number of bridging oxygen atoms of a
PO, tetrahedron to neighboring tetrahedrons) the compoundseirorder above are
composed o)., Qo, Q;, and infinitely chained,/Qs units. The different),, groups
can be easily distinguished by means of their significariffei@nt3!P chemical shift
and CSA parametet®. All crystals except forr-Mg;(PQ,), possess more than one
P-site of the sam@),, type, whose isotropic chemical shifts are only slightlyehént.
The EEIM calculations allow the assignment of the NMR sigrtalthe sites.
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6.1 Magnetic shielding tensor in Mg,P,0O1,

The crystal structurd’” of magnesium cyclotetraphosphate, M¢0;,, containsC;
symmetric tetraphosphate rind®,0:,]*", in half-chair conformation which contain
two times the two independent crystallographic P sitesRP)land the six indepen-
dent O sites (O1-06). Each P- and O-site occurs eight timéseimunit cell. Two
independent Mg sites are present (Mgl,Mg2), each occufangtimes in the unit
cell.

The NMR spectrum is shown in Fig. 8. Two signals &d B, are observed at
0=-34.6 ppm an@=-36.8 ppm, respectively, which agree with the rough vafgjiesn
in12% Experimental CSA parameters of Bnd R; are collected together with calcu-
lated ones in Tab. 1.

Various quantum clusters (QCs) shown in Fig. 7 are used for, MM and non-
embedded cluster calculations. Details of the clusterpsand figures of two addi-
tional clusters tMg, P4Ou]3 and[MgzPALOu](l’3 — used to demonstrate the convergence
of the QC expansion are given in the supplemental materlaQ®s areC; symmetric
so that artificial dipole moments are avoided. A locally aebasis is used where the
central ROy,-ring is described with 6-311G(3df,3pd) bases or bettertahedarther
distant atoms are described with 6-31G(d,p) bases or evenimal CEP-4G valence
bases with pseudopotentials for the core electrons. Th¢RD;,]*~ (Fig. 7a) is the
usual choice for the traditional EIM procedure. As it doesaamtain Mg sites, the em-
bedding charges corresponding to Mg have to be fixed to +2derdo ensure charge
neutrality of the unit cell. The second Q®lg,P,0:,]° (Fig. 7b) contains one formula
unit of the compound. It does not contain the atomic site Mgi&yever, and therefore
we use thetomic groupingVig={Mg1,Mg2} so thatg(Mg2)= g(Mg1l) is enforced for
the Ewald summation. The correct 1:1 ratio of crystallorepMgl, Mg2 sites is
also not present in QQ#1g,P,04,13 (Fig. 7c, Mg1:Mg2=2:4)[Mg,P,0:]? (Fig. 7d,
Mg1:Mg2=6:4),[Mg,P,01,]) (Mg1:Mg2=8:6), anc[MgzP4012]$3 (Mgl:Mg2=12:14),
all of which have been calculated with the same atomic graypiWhile Mgl and
Mg2 sites (Wyckoff symbolde and4d, repectively) occur in the UC only with half
frequency relative to the other atomic sites (Wyckoff syingf), the grouped type
Mg occurs with the same relative frequency of eight. Thetelgswere constructed
in a semiautomatic manner, e.(j\/lgzP4012](1’3 was created by filling spheres with a
radiusrp = 5 A around the four P-atoms of the centraC, ring. Then, the covalent
fragments were completed and a proper amount of Mg atoms eaedan order to
make the QC neutral.

The EEIM results are superior to EIM. The results of the oéfe cluster calcu-
lations are compared in more detail in section 6.5. Here, aeeid on the chemi-
cal shift tensor eigenvalues calculated with the Q/[gzP4012](5) which are given in
Tab. 1 and which suggest the following assignment betwepararental NMR sig-
nals and crystallographic sitesy Belongs to P1, andgFbelongs to P2. This results
in a root mean square deviation RMSD(5:.7, 6¢) = 1.1 ppm between experimen-

tal and calculated isotropic chemical shifts &MISD(5;", 65) = 5.9 ppm between

ii 7
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the principal axis values. The reverse assignment wouldtrasbigger deviations
(RMSD(&;,7, 65¢) = 2.2 ppm, RMSD(5;,",6¢¢) = 8.4 ppm). Further confidence for

the assignmentP— P1, B, «& P2 comes from the fact that any other of the embedded
calculations lead to the same result.

Figure7: Various MgP,O;, clusters. (a): [P,Opo]*, (b): [Mg.P.0121%, (c):
[Mg2P,01213, (d): [Mg,P,04,]2. Central P atoms with off-centered labels
denote reference points for the local expansion.
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Table 1: Calculated and experimentdP chemical shift parameters of various mag-
nesium phosphates. Pairs of subsequent lines give thenassig of crystal-
lographic sites to NMR signals. Calculated values use tedaielling of the
crystal structures referenced in the text, experimentglads are labelled in
Fig. 8. For convenience CSA the principal axes values arengiveol. 6-8.

Calc. site/ Siso * Ouniso” o o ° 033 ¢
No signal  ppm  ppm N ppm  ppm ppm
magnesium cyclotetraphosphaliég, P01
calc? P1 -33.8 -118 0.469 53.1 -2.3 -152.1
exp. Py -34.6  -124 0.459 55,9 -1.0 -158.6
calc? P2 -35.5  -127 0.401 53.0 24 -162.1
exp. R -36.8 -134 0475 617 -1.7 -170.4
magnesium orthophosphateMgs(POy)»
calc? P1 -5.8 -9 0.787 2.5 -4.8 -15.1
exp. P -0.1 -16 0.640 12.7 2.7 -15.8
magnesium diphosphate-Mg, P, Oy
calc? P1 -23.4 78  0.408 54.7 -46.5 -78.4
exp. R -19.7 85 0.321 65.4 -48.6 -75.9
(exp€ Pg -20.2 84 0.3 63.8 -49.6 -74.8)
calc? P2 -14.3 58 0.052 43.7 -41.8 -44.9
exp. Py -13.4 68 0.162 547 -42.0 -53.0
(exp€ Py -13.8 71 0.1 57.2 -45.8 -52.9)
magnesium ultraphosphat®lgP, O
calc? P1 -39.2 -163 0.312 68.0 16.9 -202.5
exp. P -38.4 -174 0.361 80.3 174 -212.8
(exp? P4 -38.7 -174 0.33 77.0 19.6 -212.7)
calc? P2 -44.0 -132 0.172 334 107 -176.2
exp. R -45.5 -147  0.183 41.6 14.6 -192.7
(exp? Pc -46.1  -150 0 289 289 -196.1)
calc? P3 -51.6 -128 0.130 20.8 4.2 -179.7
exp. ) -51.2 -141 0.219 34.5 3.8 -192.0
(exp? Pp -51.7  -144 0 20.3 203 -195.7)
calc? P4 -43.1 -155 0.354 62.0 7.0 -198.4
exp. R -43.3  -171 0.396 76.1 8.3 -214.4
(exp? Pg -43.7 -174 0.33 72.0 146 -217.7)

* chemical shifts calculated from absolute magnetic shieldings according td.eq. 2

b only calculated values for the central P-atom(s) are given (labelled in

figures), even if more P-atoms are present in the cluster

¢ literature data fron*. Other data for R are: 6;,=-14.0 ppm front?®
or d;5,=-14.7 ppm from?8; other data for B are: 6;,,=-20.3 ppm from*2>,

-20.0 ppm from?29,

4 literature data fron¥>
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PA PB *

Mg2P4012
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o-Mg,P,0O,
N L D
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MgP,O,,
M
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Figure 8: Solid state’’ P-MAS-NMR spectra of magnesium phosphates. Regions of
the isotropic bands are highlighted by a st&) &nd are enlarged in an in-
set. Sample impurities denoted by a circkg ére discussed in section 5.
From top to bottom: MgP,Oq (vimas=6 kHz, By=11.75T, inset:. 25kHz,
Bo=4.7 T), OC-Mgg(PO4)2 (VMA5:6OO Hz, B=11.75T, inset:VMAszs kHZ),
a-M92P207 (VMASZS kHz, B=11.75 T), MgBOH (VMASZZ kHz, B=4.7T,
inset: vyas=25 kHz).
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6.2 Magnetic shielding tensor in a-Mgs;(POy),

The unit cell ofa-magnesium phosphate;Mgs;(PQ,),, contains the seven sites Mg1,
Mg2, P1, O1, 02, 03, 04 with the frequencies 4, 2, 4, 4, 4, 4edpectively®®,
The crystal is composed PO, ]>~ anions Q,-phosphate) surrounded by seven?¥g
cations in the next coordination sphere.

The 3P MAS NMR spectrum at 3 kHz shows the center signab=a0.1 ppm.
CSA parameters are obtained from the MAS-NMR spectrum shaviig. 8, where
the MAS frequency was reduced to 600 Hz in order to obtain fcgerit number of
rotational side bands necessary for a reliable deternoimati such small anisotropies.
Experimental CSA values are given together with calculatezson Tab. 1.

Quantum clusters shown in Fig. 9 are used for non-embeddeédEB&EIM cal-
culations. Details of the cluster setup are given in the kmpental material. The
charged phosphate uRQ,]*~ (Fig. 9a) displays the usual choice for an EIM proce-
dure. Atomic charges are redistributed on the P and the ©, siteereas the charges
on Mg have to be fixed to the formal charge +2 (enforced by QCgehdefinition
and UC electroneutrality). The Q@®Ig;(PO,),1" (Fig. 9b),[Mgs(PQy), ]2 (Fig. 9c),
and[Mg3(PQy). 13 (Fig. 9d) are designed according to EEIM recommendatiams, i
they are electroneutral and contain the atomic sites wélséme relative frequency as
the UC. Among the non-embedded calculations only [@C,]*~ shows accidentally
a reasonable resulRMISD(5;", 65'¢)=6.0 ppm), whereas the remaining ones display
unrealistic NMR parameter®(MSD(5;", 65)=40.6, 24.0 ppm fofMg3(POy),]¢ and
[Mgg(PO4)2]g, respectively) or convergence problerﬁvlgg(PQ)z]g).

EIM and EEIM calculations lead to comparable results. Thé Edlculation yields
RMSD(5;7,6¢')=7.7 ppm. The smallest possible neutral QEg;(PQ,),]°, gives
the best resultRMSD(5;,", 55)=6.5 ppm), although the nearest coordination sphere
around the central phosphate ion is only partially filled. @ateptable result is also
obtained with the Q@Mgs;(PO;), 12 with RMSD(5.", 6%'¢)=7.4 ppm. Corresponding
shift parameters are collected in Tab. 1. The result from[Q@3(PO4)2]g is slightly
worse RMSD(5;", 6%'°)=7.7 ppm).
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!

(@) (b) (©) (d)

Figure 9: Clusters chosen for EEIM calculations aaMgs;(PQy),. (a): [PO,]*~ (b):
[Mgs(PQ).I%, (€): [Mgs(POw:I2. (d): [Mgs(PQu).]3. The central phos-
phate unit is highlighted with atomic site labels from thestal structure.

6.3 Magnetic shielding tensor in a-Mg,P,0O

Crystal structures ofi-magnesium diphosphate;Mg,P,0;, have been reported by
Calvo'® and tukaszewicZ’. In this work the probably more reliable structure of
Calvo is preferred as well as the site labelling given thete 0nit cell ofa-Mg,P,0;
contains eight formula units with two independent P-siiEk P2), seven O-sites (01—
0O7) and two Mg-sites (Mg1,Mg2). Of the two P atoms in a diptagp aniorjP,O,]*"
(Q1 phosphate) the P2 atom has the shorter distance to theryidgygen.

The3'P MAS NMR spectrum shows two isotropic signals at -13.4 (@id¢h) and
-19.7 ppm (B). Experimentaf'P CSA parameters were determined from the slow-
MAS NMR spectrum in Fig. 8 and are collected in Tab. 1. The CShes are in
fair agreement with earlier determinatidés'26:128 except for the most recent, but
probably wrong, work of Morenet al.'?® where only a singlé'P signal withd;,,=-
5.9ppm 611=74 ppm, 62,=-21 ppm, 633=-71 ppm) is mentioned. This signal could
belong to one of two P-sites in the hydrate MO, - 3.5 H,O whose chemical shift
was reported at -5.44 ppm7#. Our sample shows a significant fraction of the high-
temperature phaggMg,P,0, 131132 (signal R at 18.8 ppm) that was included in the
fit procedure.

Non-embedded, EIM and EEIM calculations were performedgigihe quantum
clusters shown in Fig. 10. TH&,0,]* cluster is the common choice for traditional
EIM calculations. The uncharged qclr/lgzPZOﬂg was constructed in an semiauto-
matic manner according to EEIM recommendations: Firgt?,®,]*~ ion was se-
lected. Second, the ion was augmented with sites that fapieres with a radius of
5 A around the two P-nuclei. Third, anionic fragments were deted and electroneu-
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trality was achieved by adding the proper amount of Mg cauiotes. No symmetry
was used in the construction of the QC. Details of the QC sateigigen in the sup-
plemental material.

The 3'P NMR chemical shifts calculated with the EEIM show the begta-
ment with the experimental results and are given in Tab. lue#of the EIM cal-
culation are significantly too shielded;{(P1) =-28.4 ppm,d;;,(P2) =-16.4ppm),
probably due to the charge mismatch[®O;]*-. The non-embedded calculations
show a worse agreement or convergence problems. The assigmihNMR sig-
nal P, to the crystallographic site P2 and signal 8 site P1 is unambigous, since
RMSD(5;7,6¢")=7.2ppm whereas the inverse assignment would have
RMSD(6;", 64%)=18.9 ppm. All other calculations based on Calvos structeze ko
the same assignment. Moreover, the assignmeatP2, B« P1 is also obtained from
EEIM calculations based on the crystal structure of Lukasze but the deviation
between experimental and calculated shift tensor eigeesalis larger

(RMSD(5;,7, 5¢%)=7.9 ppm).

Figure 10: Quantum clusters otv-Mg,P,O; used in (E)EIM calculations. (a):
[P.O71*, (b): [Mg,P,O7]). P atoms with off-centerd labels denote ref-
erence points for the local expansion.

6.4 Magnetic shielding tensor in MgP4O1;

The unit cell of magnesium ultraphosphate, M@R, containsZ = 4 formula units,
one magnesium site (Mgl), eleven oxygen sites (O1-0O11)fandghosphorus sites
(P1-P4%%°. The crystallographic sites P2 and P3 @gphosphates, whereas the sites
P1 and P4 ar@, phosphates.

The3!'P MAS NMR spectrum in Fig. 8 shows four central peaks at-88.4 ppm,
Pp=-43.3 ppm, P=-45.5 ppm and =-51.2 ppm, which is in fair agreement with pre-
vious data of Feiket al.}?>. Experimentaf'P CSA parameters were determined from
the slow-MAS spectrum and are given in Tab. 1.

Since the phosphate tetrahedra in M@R form an infinite polymeric network, it
is impossible to select a covalently saturated, formallgrghd ion as required by the
conventional EIM approach. In contrast, the EEIM guidediaow to choose various
clusters. As the distance between the four different P sitdge unit cell is rather big
for building a single cluster containing all sites, we sl problem into two separate
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calculations. With the first QC of the sum formLﬁMgP4011]g (see Fig. 11a) we focus
on the NMR parameters for P1 and P2 sites. Values of P3 andd34ase not expected
to be reliable in these calculations as the sites are destohly with a 6-31G(d,p)
basis and are located near the cluster boundary where dgrginds are present. The
second QC[MgP,Oy; 12 (Fig. 11b), is constructed to obtain reliable NMR parameeter
for P3 and P4, whereas parameters for the P1 and P2 sitesratmbile. Details of
the cluster setup are given in the supplemental material.

The non-embedded calculation {MgP4011]2 showed no convergence, so that a
complete set of'P NMR parameters for Mg®;; could only be obtained from EEIM
calculations. The results are collected in Tab. 1 and allmeraplete assignment of
experimental NMR signals to crystallographic siteBhe calculated order of isotropic
chemical shifts suggests that resonange®&responds to site P1;zRo site P4, R to
P2 and B to P3 RMSD(5;", 5)=0.9 ppm). Any other assignment would result in a
biggerRMSD(5°7, 5¢%¢). Comparison of experimental and calculated CSA parameters

iso 7 “iso
supports our assignmem}SD(5;;", 6¢'*)=10.8 ppm). Again, any other assignment

would lead to a biggeRMSD(5;,", 6%). Further confirmation comes from tR&P
2D double quantum spectrum*ds, which shows a connectivity chairny P--Pp-Ps.
According to our assignment this corresponds to the sitenqbettern P1-P2-P3-P4,
which is indeed found in the crystal structure.

Figure 11: Quantum clusters for the calculation of NMR parameters igmeaium
ultraphosphate. (aIMgP4011]2 cluster for calculation of P1 and P2 sites,
(b): [MgP40y;]2 cluster for calculation of P3 and P4 sites. Phosphorus
sites with off-centered labels denote reference pointthitocally dense
basis expansion.

t A partial assignment was already presented in the work ddefadial., where — on the basis of CSA
parameters — Pand B were related t@), sites and P and R, to Q3 sites.
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6.5 Comparison of non-embedded, EIM and EEIM calculations

A more accurate description of NMR parameters is expectad £EIM calculations
in comparison to traditional EIM calculations, because ¢harge misfit is avoided
and the quantum mechanically treated region is usuallyrgata Within the EEIM
framework there is always freedom in choosing a bigger QCthHmutuestion is if the
increased QC size pays off. Larger QCs are also commonly msedn-embedded
calculations in order to account for the most prominent cengge term$*33 In the
limit of infinitely large QCs EEIM and non-embedded calcuwasg give the same re-
sult. It is therefore interesting to investigate the cogeece of the NMR parameters
with respect to the QC size for EEIM and non-embedded calonis

For this purpose we expanded the series of QCs foifMg;, (section 6.1, Fig. 7)
with two further eIements[,MgzP4012](7) and[MgzP4012](1J3. Figures and details of the
cluster setup are described in the supplemental matergall Z shows the dependence

exp

of the root mean square deviati@BMSD(6..", 6;“’0) of chemical shift tensor eigenval-
ues with respect to the QC size. In case of non-embeddectcketulations widely

varying values occur for different QC sizes, which indisaieat convergence is diffi-
cult to achieve in such an approach. TREISD(5;", 6%) is significantly higher than

in EEIM calculations. The failed convergence with QQDg2P4012]‘1)3 displays another
problem of non-embedded calculations.

The situation is much more satisfacory for embedded caiounls, where the vari-
ation in eigenvalues for different QC choices is considigramaller. The traditional
EIM calculation gives already a reasonable resRMSD(5;", 6%")=11.4 ppm) that
allows the signal assignment. Further improvement is aeldien the series of EEIM
calculations USing [Mg2P4012]0, [Mgzp4012]0, and [Mgzp4012]g where
RMSD(5;7, 6¢') decreases monotonically from 10.0 ppm, over 6.7 ppm to 51@ pp
Calculations with larger QCs show no improvement oﬂMg2P4012]g and indicate
that the QC size is not the main source of error any more. Tasgorefor the slight
worsening oRMSD(67", 65€) in [Mg,P401,13 (6.9 ppm) andMg,P,012]%, (9.0 ppm)
is unclear so far. It might be related to the locally denséshakere an increased num-
ber of pseudopotentials is employed at farther distances fne reference points. The
neglect of core contributions to the magnetic shielding taedwrong nodal structure
of the wave function at the remote centers might introducenallsbut systematic er-
ror in the calculation of the magnetic shielding at the refiee point. Another reason
might be polarization effects at the QC boundary.

Convergence with respect to the atomic basis expansion atithei of interest was
investigated fo[MgzP4012]g. Three radial shells were used in the default setup where
a 6-311G(3df,3pd) basis was used in the range [0,2.5[ A, a 6-31G(d,p) basis in
the ranger, € [2.5,5[ A, and a CEP-4G basis and PPs in the range 5A, supple-

* In this section we omit a comparison of the EEIM with the EIM#ter approach because, to the best
of our knowledge, a detailed strategy for cluster consimads absent in EIM/cluster, which may lead
to ambiguous results. Moreover, the calculation of largel Elusters would be extremely expensive
without a locally dense basis.
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mented withd functions on P atoms in the range between 5.0 and\6 ¥ery similar
results are obtained, when the 6-311G(3df,3dp) set in range. at the atoms of the
central ROy,-ring, is augmented by diffuse functions to give the 6-31G{3df,3dp)
set. The biggest deviation in a shielding tensor eigenvh&ie/een the two calcula-
tions amounts to 0.9 ppm and the eigenvector orientatiomsdantical within 0.2.
This indicates that diffuse basis functions are not regufoe a proper calculation
of NMR parameters in solids. Deviations &Zflc with respect to the experimental
results turn out to be insignificantly smaller in the 6-31G(3df,3dp) calculation
(RMSD(5;7, 65'¢) =5.7 ppm), provided the specific parametérsand B for the 6-
311++G(3df,3dp) basis are used in conversion equation 2dud®eg the basis at the
atoms of the central #®,,-ring to 6-31G(d,p) quality leads to maximum deviation of
88.4 ppm in shielding tensor eigenvalues and td indthe eigenvector orientations.
The big change imf;’f"f IS in parts a systematic basis set specific deviation, but con
sidering the significant increase RMSD(5;,", 6¢“) =11.4 ppm § calculated with
the 6-31G(d,p) basis set specific parameters in converglation 24) reveals that the
double€ basis is not flexible enough for the prediction of NMR parasretn a wider
range of phosphorus compounds.

A change of basis functions in the outermost radial shelldasinor effect on
the calculated shielding tensors. This is demonstrated anather calculation on
[MgzP4012]‘5) where we replaced the CEP-4G basis in shell rangef the default
calculation by a 6-31G(d,p) set. The resulting shieldingste eigenvalues deviate by
less than 3.0 ppm from the default calculation and the eigeovs coincide within
1.1°. The chemical shift tensor eigenvalues deviate from theegxgental ones by
RMSD(5;7,6¢") =6.1ppm. This indicates that at larger distances from thdehuc
of interest & 5.0A), pseudopotentials and minimal bases may be employed & sav
computational resources without a significant loss in aaxur
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Figure 12: Root mean square deviation of the iR chemical shift tensor eigenvalues
in Mg, P,0O, calculated with various cluster models relative to the expe
mental values.

Similar observations were made @Mg;(PO,),, a-Mg,P,O;, MgP,0;. In total,
27 shift tensor eigenvalues were calculated by EEIM (see a5 by EIM and 21
by non-embedded cluster calculatibmeich are plotted against the experimental val-
ues in Fig. 13. Within the 15 eigenvalues that are availaiiielf three types of cluster
calculations, EEIM performs best wittMSD(5;,", 6%) =6.8 ppm. It improves the

RMSD(6;7,6¢"¢) =10.1 ppm of EIM by abouf. Non-embedded calculations give

the worst result wittRMSD(6};", 6¢) =21.2 ppm, although the best available results
were chosen when more than one non-embedded cluster ¢aednwdanverged.

Taking into account all 27 data for EEIM, i.e. including th2 digenvalues from
the covalently networked Mg, leads taRMSD(5;", 6%°) =8.8 ppm, which is still

superior to theRMSD of EIM. This indicates that networked solids can be treated b

* The covalently networked MgP,; cannot be calculated by EIM. * For cIuster[MgP4011]g
(Fig. 11a) the non-embedded cluster calculation did noteae.
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EEIM without a substantial loss in accuracit should be noted that aRMSDs given
above were obtained wﬂﬁf”’c values derived from the general conversion equation
(24) that is valid for a Iarge3r1P shift range.

TheRMSDs are significantly smaller if only the shielding for the magium phos-
phates are taken into account in the fitting procetiulR&1SD(5;;”, 5)=4.3 ppm in
case of EEIM {& = {o% — 307.19 ppm}/ — 1.0237, N=27 eigenvalues),
RMSD(6;", 65)= 4.4 ppm in case of EIM& = {0 — 311.25 ppm}/ — 0.9905,

i 7

N=15) andRMSD((Sff”, 6¢6)=21.1 ppm in case of non-embedded calculatioff§ (=
lo C“IC —309.33 ppm}/ — 0.9508, N=21). Fig. 13 shows linear regression curves for the
correspondlng fits in a plot @f" versuséflx” Obviously, an error compensation takes
place for chemically similar compounds. Such a s|RASD which is in the range of
the experimental error fo%fix” is probably not representative for the general accuracy
of the EEIM method. But even with the former value of 8.8 ppmRASD of EEIM
values is less than the standard deviation of 9.6 ppm deforecbnversion equation
(24) where only isotropic shifts are used. This indicated the shortcomings of the
quantum chemical method and the chosen atomic basis aralgyainore significant

than the errors introduced by the embedding scheme.

t Although the number of data points is rather small for a bitiastatistical estimate, we be-
lieve that the decribed trends are correct. Unpublishedltseesn further phosphorus compounds,
K3(PQ:NH)3, Nas(PO:NH)3-H,O, (NHy)4(PO:NH)4 - 4H,0, Mg (PO;NH)4 - 8H,0, LaPQ, La(PQ)s,
and LaROy - 3H,0 extend the data base to 45 shift tensor eigenvalues for EId168 for EEIM.
For EIM we obtainedRMSD(5;,", 6%") =9.8 ppm, whereas for EEINNMSD(5", 65¢) =8.3 ppm.

t This type of “internal calibration” has been used in GIPAWcaéations ong— andy—Ca(PQ), in

16, For the 24 eigenvalues presented in Table 1 of that work \weileae RMSD(5;,", 5¢/)=8.4 ppm.
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Figure 13: Correlation plot of experimental P shift tensor eigenvalues versus calcu-
lated eigenvalues by EEIVE], EIM (A), and non-embedde@) cluster
methods &;.”lc obtained via eq. 24). The solid diagonal line (green in color
plot) indicates the ideal correlation. The other lines agression curves
from internal calibrations to EEIM (black, N=27), EIM (red=15) and
non-embedded (cyan, N=21) data sets when only magnesiusppates
are used. N gives the number of sample points.

In general, isotropic chemical shifts are calculated moceieately than shift tensor
eigenvalues. This comes in part from a statistical errorpemsation. The errakéf.jcf"
in calculated isotropic chemical shifts and the emw@¢"* of calculated shift tensor
eigenvalues are related by the equatign= % Y0 (i=1,2,3). If Aéfl.”lc is assumed
to be identical for ali one obtains by error propagation

1
Noige = —AS;i . (27)
V3

Another reason for the reducerﬁfjolc is that errors in the angular electron density
distribution around a nucleus lead to a systematic distof the shielding tensor with
one eigenvalue increased and another one reduced. We ®MESD (5,7, 557¢)=2.4,

iso 7 “iso

5.4, and 3.8 ppm for EEIM, EIM and non-embedded methodsgeaisely, whens<c

150
is calculated frorrar‘l?folc by the general conversion equation. Using the above megdion
conversion equations, that are restricted to magnesiurspbtades, the values reduce

to RMSD(5°7, 6°¢)=1.6, 2.8, and 6.4 ppm, respectively.

iso is0
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7 Conclusion

A new implementation of th&mbedded lon Metho(EIM) and the EIM/cluster ap-
proach was presented, useful for the calculation of NMR patars of crystalline
compounds. Shortcomings and ambiguities of the traditior@hods were discussed.
An improved scheme named EEIM was suggested, that avoigsloces the problems
by setting up guidelines for the quantum cluster (QC) cowrtitya. Basic advantages
of the new scheme are the self-consistency of all embeddiagges and the inde-
pendence of empirical parameters such as formal chargdéisisisense the scheme is
self-contained. Uncharged QCs are recommended, which calotdimed by using the
same relative site frequencies in the QC as in the unit cdtkerAatives, likeatomic
grouping are discussed for cases where exact charge neutrality poasible. In any
case the nuclei of interest should be located near the cehtbe QC with a buffer
zone of at least two to three coordination spheres to the Q@dary. The boundary
should be drawn between atoms with ionic interactions. @mibl networked crystals
can be treated, too, if the dangling bonds are far enough fh@mnuclei of interest. A
locally dense atomic orbital basis is employed to calcukatger QCs at reduced com-
putational costs. A semiautomatized cluster setup is ptedewhich is more efficient
and less error-prone than a manual setup.

The accuracy of NMR parameters from EEIM calculations wdfscsent to allow
the new assignment of various experimeft® NMR signals to crystallographic sites
in the magnesium phosphates MgO,,, a-Mg;(PQy),, a-Mg,P,O; and MgROy;.
The inner shell region of all QCs were treated at mPW1PW/6-33d{=pd) level.
27 chemical shift tensor eigenvalues were calculated withoa mean square devia-
tion (RMSD) of 8.8 ppm relative to experimental values when a genemavesion
equation fron?'P absolute magnetic shieldings to chemical shifts was usecbn-
version equation derived specifically for the magnesiunsphates led to RMSD of
4.3 ppm. Isotropic chemical shifts were calculated withrRaviSD of 2.5 ppm (gen-
eral conversion equation) or 1.6 ppm (conversion equatiomignesium phosphates).
The quality of the results is similar to those reported fdcicen phosphates obtained
by GIPAW calculation&’.

In contrast to NMR calculations with periodic boundary citiods the EEIM
makes use of the locality of NMR properties. An obvious adage is the applica-
bility to large unit cells. Also, defect structures can bamined efficiently. The
EEIM can be readily used to calculate electric field gradi€dBFGs) and J-couplings.
It may be combined with truab initio quantum chemical models that treat electron
correlation on a more sophisticated level than the culyenvilable density function-
als. QM:QM embedding models for the QC region may help to nsalé calculations
affordable. Desirable improvements of the EEIM are a fullyoaated QC setup and
further refinement of the QC boundary treatment.
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