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Abstract

An new embedded cluster method (extended embedded ion method=EEIM) for the
calculation of NMR properties in non-conducting crystals is presented. It is similar to
the Embedded Ion Method (EIM)1 in the way of embedding the quantum chemically
treated part in an exact, self-consistent Madelung potential, but requires no empirical
parameters. The method is put in relation to already existing cluster models which are
classified in a brief review. The influence of the cluster boundary and the cluster charge
is investigated, which leads to a better understanding of deficiencies in EIM. A recipe
for an improved semi-automated cluster setup is proposed which allows the treatment
of crystals composed of highly charged ions and covalent networks. EIM and EEIM
results for19F and31P shielding tensors in NaF and in four different magnesium phos-
phates are compared with experimental values from solid state MAS NMR, some of
which are measured here for the first time. The quantum part ofthe clusters is treated
at hybride DFT level (mPW1PW) with atomic basis sets up to 6-311G(3df,3pd). The
improved agreement of EEIM allows new signal assignments for the different P-sites
in Mg2P4O12, α-Mg2P2O7 and MgP4O11. Conversion equations of the typeσ = A+B·δ
between calculated absolute magnetic shieldingsσ and the corresponding experimen-
tal chemical shiftsδ are obtained independently from linear regressions of plots of
isotropically averagedσ versusδ values on 1931P signals of small molecules.

Keywords: solid state magic angle spinning NMR, magnesium phosphates,quan-
tum chemical calculations, hybride density functional theory, self-consistent cluster
embedding scheme, point charges, lattice potential, Madelung potential, chemical shift
anisotropy
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1 Introduction

Nuclear magnetic resonance (NMR) spectroscopy is one of the most powerful ex-
perimental techniques for the elucidation of the structureof chemical compounds in
various states of aggregation. In recent years, extensive progress has been achieved es-
pecially in the field of solid state NMR spectroscopy. In principle, information about
connectivities, atomic distances2, bond angles3 and dihedral angles4 can be extracted
from solid state NMR data, which motivated the idea of a NMR crystallography5.
But rather than thinking of a replacement for established X-ray diffraction techniques
NMR should be regarded as a complementary tool which possesses the outstanding
feature that it probes the sample locally with unequaled resolution power. This makes
the method applicable to disordered and amorphous solids, too. While it is known that
tiny changes in the local environment of an observed nucleuscause significant shifts
of its resonance frequency, its prediction and understanding are often not straight for-
ward. For this reason empirical correlations deduced from tables of assigned experi-
mental spectra are very important6,7. In many cases no comparable data are available
or it seems that simple relations do not exist8. An extremely useful tool to fill this gap
consists in accurate quantum chemical calculations of NMR properties from first prin-
ciples, which give an immediate relationship to the structure without the necessity of
relying on empirical parameters. This allows the assignment of NMR signals to atomic
sites in uncommon or difficult cases, leads to a deeper insight of empirical correlations
and allows to predict spectra for different structural models.

While semiquantitative calculations of NMR properties are fairly routine for ordi-
nary small molecules in the gas phase nowadays9, the situation is not so favorable for
ionic solids where far distant Coulomb interactions are present and the number of inde-
pendent particles, i.e. the system size, is usually much bigger. The effect of Coulomb
interactions on NMR shielding tensors

↔
σ can be sizeable, especially for highly po-

larizable systems. Two basic routes have been proposed for the calculation of
↔
σ in

crystalline solids. The first takes full account of the translational crystal symmetry at
quantum mechanical level and usesperiodic boundary conditionsto obtain the elec-
tronic wave function10. The second is based on acluster modelling ansatz1.

In the last few years periodic boundary calculations have become popular in the
solid state NMR community, because two quantum chemical codes have been made
available to the public, namely the CPMD program11 with the NMR specific ex-
tensions by Sebastiani, Parinello and others12 and the CASTEP or PARATEC pro-
gram13,14 with the GIPAW extension by Mauri, Pickard and others10,15. Impressive
correlations between experimental and simulated shielding tensor components have
shown that the predictive power of theoretical calculations has reached the precision
necessary for practical applications. Still some problemsremain which, we believe,
are inherent to the underlying approximations and methodology. In general, periodic
boundary calculations are expensive for big unit cells, because the entire cell is treated
quantum mechanically. In a recent paper the current limit for GIPAW is specified to
around 900 electrons per unit cell16, which is reached quickly for larger cells con-
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taining heavy atoms. A second issue is the description of theatomic core region by
pseudo-potentials. Since the biggest contribution to the NMR shielding tensor comes
from electrons close to the observed nucleus, any approximation to the core region is
a delicate issue17,18. The GIPAW approach solves the core problem to some extend
by restoring an all-electron description in the core regionbut comes at additional ex-
pense. Under this perspective calculations following thecluster modelling ansatzare
an interesting alternative, because they can exploit the local nature of NMR properties.

The aim of this article is to show how increased benefit can be taken from the clus-
ter approach in NMR shielding tensor calculations on crystalline solids. To this end
we review advantages and disadvantages of different cluster implementations in sec-
tion 2. In section 3 we present a new cluster model, which is based on the Embedded
Ion Method (EIM) by Stueber, Grant and others1,19,20. The EIM is one of the more
advanced cluster models available at the time and – in contrast to what its name might
suggest – also applicable to uncharged quantum clusters21. Taking the simple system
sodium fluoride (NaF) as an example we demonstrate that conceptual difficulties of
EIM appear in the choice of charges attributed to the quantumcluster as well as to
point charges building up the embedding electrostatic field. Moreover, the influence of
the cluster boundary is investigated. This leads to the derivation of detailed prescrip-
tions for the construction of improved clusters. Together with the realization of a semi-
automated cluster construction procedure this gives rise to what we call the Extended
Embedded Ion Method (EEIM). Finally, we validate the EEIM and the EIM against
a set of experimental31P chemical shift tensor components of magnesium phosphates
(Mg2P4O12, Mg3PO4, α-Mg2P2O7, and MgP4O11) in section 6.

2 Overview of existing cluster models

A review of cluster modelling schemes has been published recently22. Most of the
works cited therein are focussed on the optimization of structures. Cluster calcula-
tions with focus on NMR properties have been reviewed in1. Unmentioned in either
review are the references7,23–31 that we found to be important in connection with our
work. Here, we want to work out a systematic classification ofdifferent schemes with
emphasis on NMR.

The basic idea of cluster modelling is to cut the relevant region (thecluster) con-
taining the nuclei of interest out of the solid and to performa non-periodic, molecular
calculation on it. The main advantages of cluster calculations over periodic calcula-
tions are

A1. their low computational cost. A clusteransatzbenefits from the fact that NMR
properties are rather local quantities, which leads to linear scaling behavior with
respect to the unit cell size.

A2. the general availability of a larger number of non-periodic quantum chemical
programs capable of doing NMR calculations, e.g.32–38. (In contrast there are
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only the few periodic programs mentioned in the introduction.)

and apart from these economical aspects

A3. a larger variety of quantum chemical models. For exampleexplicitly correlated
ab initio methods necessary for systems with static electron correlation9,39 or
explicitly relativistic methods for systems with heavy nuclei are available40.

A4. a larger variety of implemented properties, as for example the calculation of
indirect nuclear spin-spin couplings at different levels of sophistication which is
available in several packages.33–36,41,42. †

A5. the easily achievable modelling of non-ideal crystals with defects or impurities

The disadvantages of cluster calculations are

D1. the neglect of the translational symmetry of the wave function and often also the
loss of local (point group) symmetry of the nuclei under investigation

D2. the approximate treatment or even full neglect of long range interactions

D3. the lack of proper boundary conditions/constraints as e.g. the correct charge of
the system

D4. the large number of parameters that needs to be set, such as the cluster size (vs
expense), the cluster charge, the choice of atomic basis functions, the quantum
chemical model and the way of cluster embedding.

Despite of the basic deficiencies the results obtained from cluster calculations can be
surprisingly good, because NMR properties are local quantities in the sense that the
main contributions are determined by the electronic wave function in a restricted region
around the nuclei of interest. This has been recognized already in early calculations
of NMR parameters44–48 and was verified later for a number of model systems49–52.
Further theoretical foundation of the local approximationis given in section 1 of the
supplemental material.

The quality of the results depends critically on the clustersetup. In the following
we propose a classification scheme for the many types of cluster calculations that have
been presented in the past. It may be used as a rough estimate for the quality of a
cluster calculation. A graphical overview is given in Fig. 1.

† In fact this property has been recently incorporated in a periodic code using a super-cell technique43.
The reported computational resources for extended systemsare quite considerable, however.
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Figure 1: Tree diagram for types of cluster calculations. Acronyms and variables are
explained in the text. Unconnected arrows marked by a star (*) indicate that
the branch continues in the same way as the neighboring branch.

Two prototypes of cluster calculations can be distinguished: The first type arenon-
embedded cluster calculations, where all atoms inside the cluster are treated quantum
mechanically (at the same level) and all remaining atoms of the solid are ignored, see
e.g.7. Obviously, long range interactions are disregarded in this approximation. While
this might be acceptable for magnetic shielding calculations on non-polar molecular
crystals, it is not sufficient for ionic systems, where long range coulomb interactions
have proven to be important30,46,53. In such cases the achievable size of the quantum
cluster (QC) is usually too small to arrive at converged results.

The second type areembedded cluster calculations. Here, long range interactions
are approximated electrostatically by embedding the QC in an array of point charges

5



Weber, Schmedt auf der Günne: Calculation of NMR parameters in ionic solids

{q j(r j)}, j = 1, 2, . . .M, which mimic the effect of atoms outside the QC by adding a
potential

V(ri) =
M∑

j<QC

q j

ri j
with ri j = |ri − r j| (1)

at a pointri in the quantum region. Several recipes have been given for the deter-
mination of the numberM of point charges, their magnitudeq j, and their location
r j

19,24,29,54–56. Theq j are not necessarily identical to atomic charges and the locations
r j do not necessarily coincide with nuclear positions54. On the one hand, the identifi-
cation as a classical substitute for an atomic site in a crystal is appealing, because each
point charge has a concrete meaning then. On the other hand, an infinite number of
point charges would have to be generated around the QC and summed according to (1)
in order to represent an ideal crystal, which is impossible in practice.

At this point the embedded cluster calculations split in further subclasses: Some
schemes simply truncate the array of atomic point charges without further modification
at some distance of the QC24,26,30,31. Since the direct-space summation of (1) converges
only slowly with growingM, considerable errors can occur54,56,57. This becomes man-
ifest in an oscillatory behavior of the chemical shift tensor eigenvalues at various levels
of truncation, which in case of31P amount to≈1 ppm even for large clusters in24 (see
Fig. 4c of that work).

In more advanced schemes19,54,56this uncertainty is removed with moderately in-
creased computational effort by performing anEwald summation58, which allows the
virtually exact calculation of the electrostatic potential for an ideal ionic crystal. There-
fore, the presence of the QC is ignored for a moment so thatall atomic sites of the
crystal are represented by point charges. Then, (1) can be rewritten as

V(ri) =
N∑

j∈UC

∑

n

′ q j
ri j,n

, (2)

where indexj runs over theN atomic sites in a unit cell (UC), the direct-space grid
indexn = (n1,n2,n3),ni ∈ Z points to all possible unit cells andri j,n = |ri j,n| is the
distance betweenri and the location of atomj in the UC with indexn. The prime be-
hind the sum symbol indicates that terms whereri = r j have to be dropped. According
to Ewald eq. (2) can be decomposed in two parts, one summationstill in direct space
primarily accounting for near distant charges (first term in(3)) and one summation in
reciprocal space, primarily for far distant charges (second term in (3))

VEwald(ri) =
N∑

j∈UC

∑

n

′
q j
erfc(η ri j,n)

ri j,n
+

1
πV

N∑

j∈UC

q j
∑

m,0

exp(−[πfm/η]2)
f2m

· cos(2πfm · ri j,0) (3)
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wherem = (m1,m2,m3) is the reciprocal grid index,η ∈ (0, 1) the Ewald convergence
parameter†,V the unit cell volume, andfm the position vector in reciprocal space. Like
the direct sum in (2) the Ewald sum in (3) is infinite, i.e.m,n → (∞,∞,∞), but it
converges quickly whenn andm are simultaneously increased. The implementations
in19,55 useη = 0.2, nmax = (8, 8, 8) andmmax = (5, 5, 5) to reach converged results.

Once, the exact Ewald potentialVEwald(ri) is obtained according to (3) it has to be
incorporated in the quantum mechanical electronic structure (QM) calculation. Cur-
rently available QM software cannot handle scalar potential fields directly, but a re-
stricted number of point charges, only. Therefor, a fitting procedure is used to vary a
finite set of point chargesq j,DS with the potentialVDS(ri) (subscriptDS indicates that
a direct summation according to (1) is feasible) so that it reproducesVEwald in the QC
region in an optimal sense, i.e. it minimizes the root mean square deviation

∆rms =




Nr∑

i

[VEwald(ri) − VDS(ri)]
2 /Nr




1/2

(4)

Different strategies have been devised for the choice of thecheck pointsri and their
numberNr

29,54,55. It seems that each strategy leads to satisfactory (=converged) results
provided that the check points are reasonably distributed over the QC region and that
Nr is sufficiently large. In the algorithm of Klintenberget al.55 check points are located
at all nuclear positions in a sphere containing the QC regionand additionally at a larger
number (∼1000) of randomly chosen points in the QC region. Each randompoint falls
in the union of spherical shells with an inner and outer radius of 0.1 and 2.5Å centered
at each non-randomly chosen point or previously chosen random points.

Different schemes have also been suggested for the determination of the number
and the position of the fitting point chargesq j,DS. The schemes presented in54,55seem to
be equally suitable because a convergedVDS(ri) in the QC region can be obtained with
both of them when the number of fitting charges is sufficientlylarge. Klintenbergs
algorithm offers the advantage that it keeps the picture of point charges as classical
substitute for atomic sites. This is achieved by(i) locating fitting charges only at
nuclear positions,(ii) freezing the fitting charges near to the QC to the ideal atomic
charge values of the infinite crystal, and(iii) fitting the remaining charges under the
constraint of a minimum norm solution, i.e. with as less deviation from ideal charges
as possible.

More significant differences appear in the choice of atomic charge valuesq j at-
tributed to the crystalline sites in (3). It should be noted in advance that atomic charges
in molecules or crystals are no quantum mechanical observables, so that each quan-
tification is related to an underlying model. In other words,there is no ’true’ atomic
charge that can be assigned to aq j and all choices are somewhat arbitrary. Even if a
set of charges was available that created the quantum mechanically exact electrostatic
potential59, the electrostatic approximation in the embedded clusteransatz, i.e. the ne-
glect of exchange and correlation interactions, would still prevent an exact description

† η defines the relative weight of the direct space to the reciprocal space sum

7



Weber, Schmedt auf der Günne: Calculation of NMR parameters in ionic solids

of the quantum system. Nevertheless, a few comments can be made on the usefulness
of certain choices forq j which have been used in the past:

1. Formal oxidation numbers26,29,54,55,60(or Evjen charges31,61–63as a variant of for-
mal atomic charges) are easy to determinea priori. Their usage is inadvisable,
however, as the potential resulting from such charges is inaccurate25. All tools
for wave function analysis indicate that formal charges tend to largely exaggerate
the charge separation in ionic systems.

2. Parametrized atomic charges64, e.g. those from molecular mechanics (MM)
force fields, certainly pose an improvement over formal oxidation numbers, but
have the drawback that they must be determined in advance on suitable reference
systems. Formally, empirical parameters are introduced inthe cluster calcula-
tion.

3. Mulliken charges65 are one of the simplest methods to transfer results of a wave
function analysis to embedding charges and have been used, e.g., in25. The draw-
back of Mulliken charges are(i) the equal partitioning of atomic overlap popu-
lations, which is problematic for ionic systems,(ii) the neglect of intra-atomic
charge distribution, and(iii) the large basis set dependence which is especially
problematic for extended or unbalanced basis sets66. The basis set dependence
is inherent to all basis set related methods of wave functionanalysis, but can be
significantly reduced (see next item).

4. NBO charges66 are obtained from anatural population analysis(NPA) which
belongs to the class of basis set related methods, too, but shows a number of im-
provements over Mullikens analysis. NPA takes place in an orthonormal, natural
atomic orbital set (NAO) which avoids the partitioning problem of overlap pop-
ulations and reduces the basis set dependence significantly. Population analyses
based on similar ideas have already been presented in earlier works67–69. The
computational effort to obtain NBO charges is moderate. Withthese properties
NBO charges seem to be a good choice for embedded cluster calculations in
ionic systems, where the AO basis is often unbalanced. NBO charges have been
used in the EIM approach19.

5. ESP derived chargesare designed to mimic the quantum mechanically exact
molecular electrostatic potential (ESP)59 at certain check pointsrk in space as
closely as possible. ESP charges depend on the choice ofrk for which a num-
ber of different selection schemes have been proposed70–75. In all the schemes
the check points are placed “outside of the molecule”, near its van-der Waals
surface. The computational effort for ESP charges is usually moderate.

Although ESP charges seem to be ideally suited for the representation of an elec-
trostatic embedding potential there are a few well known problems75: (i) ESP
charges are highly sensitive to the molecular conformation, (ii) ESP charges
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from early implementations are not rotationally invariant74, i.e. they depend
on the orientation of the molecule in the coordinate system,(iii) ESP charges
of atoms buried in the inner part of the cluster cannot be determined unam-
biguously in many cases because the fitting procedure in general is statistically
under-determined and the larger the molecule is the fewer charges can be as-
signed validly. ESP (ChelpG) and NBO charges were compared foreight amino
acids in20. Similar charge values and nearly identical NMR shielding tensors
were reported in most cases.

6. AIM charges76 are appealing because of their physically motivated definition.
However, their calculation is computationally rather expensive. To our knowl-
edge AIM charges have not been used in cluster calculations on NMR properties
so far.

The methods described in 3-6 can be used forself-containedcluster calculations,
where atomic charges obtained from a population analysis inthe QC are transferred
to the embedding point charge array24. In this way ana priori parametrization pro-
cedure for the point charges can be avoided. It should be considered that, in return,
a change in the environment will usually have an effect on thewave function and the
population analysis. This mutual dependency is solved in the EIM approach19 by an
SCF procedure for the embedding charges (vide infra).

Another parameter of embedded cluster calculations is thequantum cluster charge
qQC, i.e. the sum of nuclear and electronic charges in the QC region, given in multiples
of the proton chargee. In our opinionqQC should be clearly distinguished from the total
system charge,qtot, defined byqQC plus the sum of embedding point charges.qQC fixes
the amount of electrons in the QC region and is usually restrained to integer values that
allow closed-shell NMR calculations.qtot may take any value and is restricted only by
the requirement that the charge array should produce an accurate Ewald potential in
the QC region.

Surprisingly little effort has been put on the determination of properqQCs so far,
although this parameter certainly plays an important role.The importance is indirectly
shown in Fig. 2 of54, which indicates that the error of the lattice potential is correlated
with qQC. In the pastqQC was derived almost exclusively† from the sum of formal oxi-
dation numbers of the constituent QC atoms19,20,29,54,62,63,77. This led to highly charged
QCs in some cases, like[Mg9O9Mg16]32+ in 77 or [NiO6]10− in 63. We like to em-
phasize that QC charges derived in this way must be regarded as inadequate in the
same way as formal charges are inadequate for representing atomic point charges (see
above). It seems that most workers intuitively avoided highqQCs by a different cluster
construction. However, lowerqQCs were accepted in nearly all previous works. Forqtot
there seems to be a broader agreement that it should be zero19,20,27,29,62,63. To the best

† An exception is described in27, where the charge of a[TiO5] cluster has been reduced from the formal
value−6 to −4. The latter value was motivated by the sum of Mulliken atomiccharges (= −4.147)
determined in a periodic calculation and by the requirementof a closed shell calculation.
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of our knowledge there are no systematic investigations on how qQC andqtot influence
the quality of calculated NMR parameters.

As last criterion for a classification of embedded cluster methods we mention the
modelling of the QC boundary region. In the simplest setup no special care is taken
about the boundary so that QC and point charges are in immediate neighborhood19.
The abrupt transition is problematic, however. While the electrostatic approximation
is acceptable for long distant interactions, say> 5Å for non-bonded atoms78, it breaks
down at smaller distances where quantum effects like chemical bonding and Pauli re-
pulsion between electrons take place. Yudanovet al. demonstrated that point charges
at the boundary can lead to a significant, unwanted distortion of the QC electron den-
sity77. The effect is especially pronounced when easily polarizable anions represented
by diffuse basis functions in the QC adjoin to positive pointcharges in the embed-
ding array. An improved description of the ESP at near distances was achieved by
expanding the point charge to a charge distribution or multipoles25,27,78,79. Further im-
provement can be achieved, in principle, by replacing the point charges at the boundary
with suitable total ion model potentials (TIMPs) that account also for effects of cova-
lent bonding and cluster/environment orthogonality26,28,31,77. The TIMPs have to be
adapted to the individual bonding situation, however.

Another possibility to account for covalent bonding at the QC boundary is to satu-
rate the dangling bonds with monovalent atoms (usually hydrogen). The technique has
frequently been used in QM/MM and ONIOM approaches80,81even though not specif-
ically with respect to NMR property calculations in ionic solids. Several aspects of
this strategy are problematic:(i) a systematic improvement is difficult as the saturated
QC formally describes a new quantum system with wrong composition, (ii) the charge
array has to be modified near the positions where the monovalent atoms are added but
there is currently no well-grounded recipe how this can be done, (iii) the positioning
of the monovalent atoms is unclear. Empirical rules are usually introduced which is
unsatisfactory from a theoretical point of view.

Finally, frozen localized orbitals placed at the QC boundary, that are excluded from
the SCF procedure, are another possibility to approximate covalent bonding in the cut-
off region82,83. Like the TIMP and the dangling bond saturation schemes thisapproach
is not self-contained and introduces additional empiricalparameters that have to be
determineda priori.

The probably best but most expensive option is to increase the cluster size so that
the boundary will be shifted farther away from the nuclei of interest. This strategy has
been pursued in the EIM/cluster approach20. Local approximation methods may be
introduced to reduce the computational effort for growing QC sizes84.

A medium course between cluster expansion, local approximation and effective
embedding potential was presented recently with thefrozen-density embedding(FDE)
method adapted for NMR calculations by Jacob and Visscher85, where NMR shield-
ings are calculated in a subsystem within the QC. The idea of partitioning the QC in
further subsystems and keeping the density in parts of them fixed has already been
used in earlier calculations on other properties, see86 and references cited therein.
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In our overview we left out general aspects of NMR calculations on molecules
such as the choice of the quantum chemical model, the type of the basis set and the
choice of gauge for the magnetic shielding calculation. Excellent reviews are avail-
able on these topics9,87. It is widely accepted now that reliable calculations of NMR
parameters require inclusion of electron correlation as well as extended basis sets of at
least valence triple-ζ quality plus polarization functions. Diffuse functions are usually
unnecessary in solid state calculations because each atom is surrounded by other atoms
which provide additional basis functions. The choice of gauge origins by the GIAO
method88 has proven to be satisfactory while being comparably easy toimplement for
various quantum chemical models.

3 Systematic improvement of a cluster approach

For improved cluster calculations we must eliminate the disadvantages D1–D4 enu-
merated above as far as possible, while preserving the advantages A1–A5. Nothing
can be done to fix the translational symmetry loss (D1), sincethis is the nature of the
cluster approach. In many cases it is beneficial however to preserve local symmetry el-
ements near the nucleus of interest, because they can reducethe computational expense
or restrict the shielding tensor orientation. Concerning D2we prefer an approximate
treatment over a complete neglect of long range interactions, which is a compromise
between accuracy and expense of the calculation. ConcerningD3 we can improve the
boundary conditions by requiring certain conditions (see below) for a properly cho-
sen cluster. Looking at our classification scheme in Fig. 1 wefind that following the
branches on the right side lead to more satisfactory results. Finally, concerning D4 we
suggest a systematic way for the cluster generation and provide necessary tools for an
automatized setup.

Most NMR cluster calculations presented in the past suffer at least from one of
the disadvantages D2–D4 and could be improved at modest additional expense. In
the Embedded Ion Method (EIM) and the EIM/cluster method developed by Stueber,
Grant and others1,19,20 a major step is taken towards an improved description of long
range interactions (i.e. curing D2) by performing anEwald summationof NBO or ESP
charges. Therefore we took this method as a starting point ofour work. The heart of
the EIM and EIM/cluster approaches is a SCF procedure for the embedding charges
which we adopt with modifications that are described in section 3.1. In section 3.3
we use exemplary calculations on NaF to demonstrate the shortcomings of EIM with
respect to D3 and D4. We make proposals how these can be cured or at least reduced.
To distinguish the traditional EIM from the modified versionwe will call the latter the
extended embedded ion method(EEIM).

11
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3.1 SCF procedure for embedding charges (EIM)

The Embedded Ion Method (EIM) combines high-level calculations of a QC including
the nuclei of interest with an embedding of the QC in an exact,self-consistent, purely
classical electrostatic potential of the crystal field. Theexpensive part in EIM calcu-
lations is usually the QM part, whereas the derivation of theelectrostatic potential is
relatively cheap. A flow chart of our implementation is givenin Fig. 2.
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The implementation in this work was made independently fromthe earlier one
reported by Stueberet al.19. The functionalities of the two implementations are very
similar, with the main difference occurring in the initial steps. We therefore give only
a short description here, introduce the important input parameters and mention specific
modifications.

In the initial steps a suitable fragment of the crystal is chosen as QC and a charge
qQC has to be assigned to it. While the traditional scheme19 proceeds with an electronic
structure calculation on the non-embedded QC in order to obtain an initial set of atomic
site charges (qsite), we prefer a simple initial guess forqsite at the beginning, so that the
first QM calculation is already performed on an embedded QC. Webelieve that this
adds more robustness to the scheme, as we observed convergence problems in several
electronic structure calculations on non-embedded QCs, whereas no problems were
present when the same QCs were embedded†. Moreover, making a reasonable guess
instead of an initial QM calculation reduces the computational effort. By default we
use formal atomic charges for the initial site charges. In the next step we enter the

† In this work we leave out the partial structure optimizations described for non-embedded QCs in19.
Partial optimizations can also be performed in the presenceof point charges21, but special precautions
have to be met in order to make them reasonable.
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point-charge-SCF loop (see Fig. 2, not to be confused with theSCF procedure in the
electronic structure calculation).

From the unit cell definition and the atomic site charges the EWALD program cre-
ates a finite point charge array,qar, that mimics the lattice potential of an ideal (in-
finitely extended) crystal in a region enclosing the QC. The program is based on the
code of Klintenberget al.55 with modifications similar to those described in19.

zone 3

b

c

a

O7

O6

O4

P1
O1

P2

O3

O5

O2

R2

R1

(0,0,0)

unit cell

zone 1

zone 2

Figure 3: Definition of the three zones in the (E)EIM procedure.

The finite point charge array is composed of three disjoint zones as shown in Fig. 3.
Assume the QC consists ofNQC atoms. Zone 1 is a spherical volume with the minimal
radiusR1 around the origin (0,0,0) that contains all QC atoms. The number of atoms in
zone 1 isN1 ≥ NQC and typically amounts to∼ 102. R1 andN1 are determined through
the QC definition. Zone 2 is a spherical shell around zone 1 containing N2 atoms
(typically,∼ 102–103). A lower bound ofN1 +N2 has to be given as input parameter.
Since all atoms with equal distance from the origin should begathered in the same zone
the actualN2 is determined by the next higher number in a spherical shell expansion
that fulfills this criterion.R2 is the final outer radius of zone 2. The atoms of zones 1
and 2 are described by unaltered input charges. Zone 3 is a parallelepiped enclosing
zone 2 and is generated by replicating the unit cell at (0,0,0) Na times along the positive
and negative direction of crystallographic axisa, Nb times along±b, andNc times
along±c (Na, Nb, Nc ∼ 6, typically). If NUC is the number of atoms per unit cell, zone
3 containsN3 = (2Na × 2Nb × 2Nc) × NUC − N2 − N1 atoms (typically∼ 105). The
atoms of zone 3 are substituted by fittable charges in order tomimic the exact lattice
potential in zone 1 and 2. The direct sum potential of the point charge array is

VDS(ri) =
∑

j

′ q j
ri j

with j ∈ zones 1, 2, 3 (5)

Each zone 3 charge may be varied independently. The fitting procedure minimizes
∆rms defined in eq. 4 under the following constraints:(i) the total chargeqtot must be

13
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zero,(ii) the dipole moment of the point charge array must be zero,(iii) among various
sets of zone 3 charges that might minimize∆rms under the previous constraints the one
is chosen where the sum of charge deviations from the corresponding input charges is
minimal (“minimum norm solution”). The set of checkpointsri at which the potential
is calculated consists of all atomic positions in zone 1 and 2as well as a number ofNrcp

randomly chosen interstitial points in zone 1.Nrcp has to be given as input parameter
and is typically chosen two to four timesN1 + N2. In a first step the exact Ewald
potential according to eq. 3 is calculated at theNr = N1 + N2 + Nrcp checkpoints.
Then, the charge fitting is performed by solving the system ofNr + 4 linear equations
defined in55 (equations 6 to 10). At this step we improved the program efficiency by
replacing the default solver routinedgelsx from the LAPACK library89 by vendor
specific, CPU optimized implementations90,91. The final charge array is considered as
a reasonable approximation to the lattice potential if∆rms < 10µV 20, and if the fitted
charges vary by less than0.1 from the charges in zone 1 and 2.

The optimized point charge array,qar, is written to a file with an appropriate input
format for the subsequent electronic structure calculation. The charge points in the
QC region are replaced by quantum mechanically defined atomsconsisting of a nu-
cleus and electrons in orbitals. In principle, any electronic structure program may be
used that(i) can do SCF calculations in presence of a large number of point charges,
(ii) is able to do a reasonable population analysis and(iii) is able to calculate the de-
sired NMR parameters. In this work the GAUSSIAN 03 package was used. Typically,
we employ a hybride DFT model and triple-ζ AO basis sets with multiple sets of po-
larization functions. Atomic charges within the QC,qQC, are determined by NBO
population analysis.

Resulting NBO chargesq(n)
QC,i of the i-th atom in then-th point-charge-SCF cycle

are compared with the NBO chargesq(n−1)
QC,i of the previous cycle (∀n :

∑
i q

(n)
QC,i = qQC).

In our definition self-consistency of the point charges is achieved when

ǫ = |q(n)
QC,i − q(n−1)

QC,i | ≤ 10−5 for all i (6)

in units of the proton chargee(= 1.602×10−19C). This convergence criterion is stricter
than the one given in19; in contrast to former investigations on the charge convergence
we optimizeall site charges in this work and we therefore wanted to minimizethe
error from this source as far as possible. If self-consistency is not achieved the NBO
charges are transferred to the atomic site charges (input for EWALD ) and the next SCF
cycle is performed. If the convergence criterion is fulfilled (usually happens in less
than 15 cycles) the program exits the point-charge-SCF loop,creates the final point
charge array by an additional EWALD run and performs the NMR calculation using
the GIAO method88.

14
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3.2 Problems of the EIM approach

In the past the EIM was mainly applied to organic compounds with relatively low ion
charges. In the following we will enumerate some conceptualdeficiencies or open
questions of the EIM that gain importance when typical inorganic compounds with
highly charged ions are involved. We will show how these problems can be avoided or
reduced.

1. Dependency on formal charges. It is clear (cf. section 2) that formal atomic
charges should be avoided in embedded cluster calculations. The EIM does not
follow this guideline strictly. Although NBO charges are used for charge par-
titioning within the QC, the total QC charge itself is still determineda priori
by summing up the formal charges of the constituent atoms. Moreover, formal
charges are assigned to crystallographic sites that have norepresentative in the
QC19,92. All this can lead to methodological inconsistencies as well as to a pro-
nounced charge mismatch, especially in the treatment of highly charged ions.

2. Lack of generality. An important aspect of the EIM or EIM/cluster approach,
which – to our knowledge – has not been discussed in detail so far, is the trans-
fer of the NBO charges to the embedding charges (step “adapt site charges”,
q
(n−1)
QC

→ q
(n)
site in Fig. 2). In the following we show that a consistent transfer

implies a restricted choice of QCs.

Let us assume a scenario where a certain crystallographic site is present for
multiple times in the QC. Because a symmetry loss can occur in the cluster ap-
proach, population analysis can yield different atomic charges for that site. It is
then unclear which of the charges should be transferred to the embedding field.
Selecting one of the charges arbitrarily will in general lead to the unreasonable
result that the total unit cell charge and the total embedding field charge is un-
equal zero. Without extension the EIM is strictly only applicable to QCs which
contain each crystallographic site at most for one time.

Furthermore, it has been claimed that the traditional EIM orEIM/cluster ap-
proach cannot be applied to crystals composed of covalent networks1. This
comes from the requirement that the QC has to be a finite, closed shell molecule
with integer charge calculated from the atomic formal charges.

3. Lack of systematic improvement. The traditional EIM approach defined the
QC as the molecule containing the nuclei of interest, i.e. a set of only covalently
bound atoms like the complex anions in19,92. This definition left no space for
systematic improvements. In order to obtain more accurate results the QC has
to be extended and the electrostatically treated part must be reduced. The ad-
vantage of an extended QC has been recognized in the EIM/cluster approach20

but the composition of the QCs still seems not well formalized. From a fun-
damental point of view, a systematic improvement of the cluster approach can
only be achieved, when the QC adapts more and more the characteristics of a
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macroscopic crystal. Of course this cannot be used as a practical advice, but at
least we can try to incorporate certain boundary conditionsthat define a crystal,
such as charge neutrality, at every stage of our approximation.

The effect of the deficiencies is demonstrated with a few simple calculations: We cal-
culate the19F chemical shift parameters of solid sodium fluoride (NaF) atmPW1PW/6-
31G(d,p) level with non-embedded cluster, EIM and EIM/cluster calculations. Details
of the conversion from the absolute shielding scale to the chemical shift scale are given
in section 4. Good results should be near the experimental valuesδ

19F
iso
= −221ppm93

andδ
19F

aniso
= 0ppm. The latter value results from the fact that the fluorine atoms are

located onOh symmetric sites in an ideal NaF crystal94. Several QCs that may be
chosen are shown in Fig. 4.

1-

F

δnon-embedded= −284.6 ppm
δEIM = −284.6 ppm

(a)

1+

NaF

δnon-embedded= −213.6 ppm
δEIM/cluster = −208.8 ppm

(b)

0

F

Na

δnon-embedded= −226.1 ppm
δEEIM = −223.5 ppm

(c)

0

F

Na

δnon-embedded= −221.9 ppm
δEEIM = −221.3 ppm

(d)

1-

F

Na

δnon-embedded= 405.0 ppm
δEIM/cluster = −227.2 ppm

(e)

Figure 4: Choices of quantum clusters for (E)EIM calculations of the19F shielding
tensor in sodium fluoride. Fluorine atoms drawn in green, sodium in cyan.
(a) F−, (b) [Na14F13]+, (c) [Na18F18]0, (d) [Na62F62]0, (e) [Na62F63]1−. The
given chemical shifts always refer to the F− nucleus closest to the center of
the corresponding cluster.
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The first QC (Fig. 4a) consists of a single fluorine anion only.This choice follows
the guidelines of the classical EIM, in which the bare anion is chosen as QC. The QC
chargeqQC is fixed to−1 according the formal charge of F−. Once fixed, the EIM does
not alterqQC any more, but merely redistributes partial charges betweenthe atoms
within the QC. This has no effect in case of a single atom and, hence, all parameters of
this EIM calculation are determined by formal charges: A charge of−1 is transferred
to the embedding point charges at fluorine sites and a charge of +1 is assigned to the Na
sites in order to achieve charge neutrality. The resulting EIM shift δ

19F
iso
= −284.6 ppm

is significantly smaller than the experimental value and does not differ from the value
of the corresponding non-embedded calculation. Obviously, the too strong shielding
results from an excess of electron density in the QC that cannot be removed by the
embedding charge field.

The second QC ([Na14F13]+, Fig. 4b) seems to represent a possible choice for an
EIM/cluster calculation.qQC=+1 is again obtained from formal charges. However,
a consistent charge distribution with a total cluster charge qtot=0 and unit cell charge
qUC=0 is achieved only as long as formal charges are assumed for the atomic charges
in the QC and in the point charge array. Starting the point-charge-SCF loop of the EIM
leads to inconsistencies: The NBO charge of the QCs’ central F-atom (-0.87) differs
from the NBO charges of the edge centered F-atoms (-0.89), so that it is unclear what
charge should be transferred to the F-sites of the point charge array. An analogous
problem arises for the Na-sites because of different NBO charges of Na-atoms at the
face centers (0.84) and at the corners (0.93) of the QC, respectively. Selecting any
pair of these unmodified F and Na NBO charges leads to the unphysical resultqtot , 0
andqUC , 0. The latter inequality is also incompatible with the requirements of the
EWALD program. Assigning averaged site charges of the kind

q̄(n)
F
= 1

13

13∑

j=1

q(n−1)
QC,F j

and q̄(n)
Na
= 1

14

14∑

k=1

q(n−1)
QC,Nak

(7)

does not solve the problem, becauseq̄F , −q̄Na is obtained for this cluster, which
would yield againqUC , 0. A possibility to restore charge neutrality for the unit cell
is to define atomic charges as

q̃(n)
F
= 1

2 (q̄
(n)
F
− q̄(n)

Na
) and q̃(n)

Na
= 1

2 (q̄
(n)
Na
− q̄(n)

F
) (8)

This allows a pseudo EIM procedure in whichqtot , 0 after the replacement step
of point charges in the QC region with atoms (see Fig. 2). In other words, there
is a charge mismatch betweenqQC (=+1) and the sum of the replaced point charges
which makes the procedure inconsistent. Nevertheless, eq.6 provides an abort crite-
rion for the point-charge optimization cycle. The final pseudo EIM charge amounts
to q̃(3)

F
= −0.86864 = −q̃(3)

Na
with a charge mismatch ofqQC − 0.86864 = 0.13136.

The calculated isotropic shift for the central F nucleus amounts to−208.8 ppm. The
deshielding of 12.2 ppm with respect to the experimental value is in parts probably
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also an effect of the electron deficiency in the QC†. The effect of the QC charge mis-
match onδ

19F
iso

becomes more clear in the series of pseudo EIM/cluster calculations
using[Na14F13]X QCs with different cluster chargesX = {−3,−1,+1,+3}. The results
are shown in Fig. 5 and confirm the expected trend from a simplistic view that posi-
tively charged QCs yield too largeδ

19F
iso

values (magnetic shielding too weak) whereas
negatively charged QCs yield too smallδ

19F
iso

(shielding too strong). As demonstrated
by the shift of[Na14F13]5−, there is no simple (monotonic) correlation betweenX and
δ
19F
iso

in molecules, however, because the changes ofδ
19F
iso

depend primarily on param-
agnetic and diamagnetic shielding contributions, whose magnitudes depend in a more
complicated way on the electronic structure. In any case, charge mismatches seem to
be disadvantageous.
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Figure 5: Dependency ofδ
19F
iso
(central F-nucleus) on the cluster chargeX in embedded

and non-embedded quantum clusters[Na14F13]X. Additional data points are
given for other EIM/cluster calculations.

The charge mismatch described in the previous paragraph canbe avoided by a QC
construction with equal amounts of sodium and fluorine atoms. In such cases one
always obtainsqQC = 0, q̄F = −q̄Na and henceqUC = 0 as well asqtot = 0. The QCs
[Na18F18]0 (Fig. 4c) and[Na62F62]0 (Fig. 4d) follow this guideline. The calculated
isotropic shifts for the central F-nucleus of -223.5 ppm and-221.3 ppm, respectively,
are in excellent agreement with the experimental value. This indicates that uncharged
QCs are generally a favorable choice.

† Compared to the true electron distribution in an equivalentcutout of the NaF crystal the[Na14F13]+

cluster has an electron deficiency, because formal atomic charges are always an exaggerated description
of the true charge distribution between anions and cations.

18



Weber, Schmedt auf der Günne: Calculation of NMR parameters in ionic solids

A drawback of[Na18F18]0 is the loss ofOh symmetry, which leads to a dipole
moment of the QC†, a spurious electric field gradient (EFG) unequal to zero at the
central F-nucleus, and a chemical shift anisotropy ofδaniso = −13.5ppm. It is clear that
no finite QC can be realized for NaF where both charge and the next higher electrical
moment are zero. A reasonable compromise has to be met. Improvement can be
achieved by moving the QC boundary farther away from the nucleus of interest, while
keeping the charge mismatch and the EFG small. In[Na62F62]0 the anisotropy of the
central19F nucleus reduces toδaniso = −8.1 ppm‡. Oh symmetry andδaniso = 0 ppm is
restored in[Na62F63]1− (Fig. 4e). The isotropic shift of the non-embedded calculation
shows a large deviation from the experimental value§ while δ

19F
iso
= −227.2 ppm for the

embedded calculation is acceptable.

3.3 The Extended Embedded Ion Method (EEIM)

The problems with the traditional EIM method mentioned in the previous section can
be avoided or reduced if the following guidelines for QC construction are taken into
account. These constitute the EEIM.
Elimination of the charge mismatch. An improved scheme should not be based on
formal charges. This can be accomplished as follows. In spite of the fact that atomic
charges are no observables, one exact rule for atomic charges in (ordinary) crystals is
always valid: The sum of atomic charges in a unit cell (UC) is zero

qUC =
∑

i∈UC

qi = 0 . (9)

The cell is generally composed of a finite number of differentatomic sitesX j ( j =
1, 2, . . .N), each of which occursM(X j) times in the UC. (M(X j) is the multiplicity
of the Wyckoff symbol for the site.) The relative frequency of a site in the UC is
fUC(X j) = M(X j)/

∑
jM(X j) = M(X j)/NUC. Thus, it is possible to construct a QC

with an exact charge of
qQC = 0 (10)

if all different atomic sites are included with the same relative frequency as in the UC

fQC(X j) = fUC(X j) for all j . (11)

With such a QC, population analysis will give atomic (NBO) charges forall sites
which can be transferred to the point charge array. The abovementioned dilemma (sec-
tion 3.2) in the assignment of site chargesqX j

, if a site is present for several (n) times

† The embedding charges do not fully compensate the dipole moment ‡ Further improvement
to δaniso=+0.4 ppm was achieved when the flexibility of the atomic basis at the cluster boundary of
[Na62F62]0 was reduced to a minimal CEP-4G basis. On the other hand, the usage of numerous PPs in
the vicinity of the central nucleus introduces a deviation in the isotropic shielding (δiso=-216.4 ppm).
§ The origin of the deviation is unclear so far but might be related to numerical problems due to near
orbital degeneracies.
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in a QC with broken symmetry, can be avoided by averaging overthe corresponding
NBO charges.

qX j
=

1
n

n∑

i∈X j

qQC,i . (12)

In case of large unit cells the inclusion of all sites with their correct relative frequency
in the QC is not viable anymore. Then, the next best directiveis to group subsets of
similar atomic sites intoatomic typesΞν, which have an averaged atomic charge and
a joint relative frequency (atomic grouping). Several atomic types may be defined at
a time but the sets must be disjoint. The relative frequencies of the atomic types must
be the same in the QC and the UC, otherwise eitherqQC or qUC may deviate from
zero in the course of the EIM charge optimization. The rules for atomic grouping are
summarized in the following equations:

Ξν = {X j,Xk, . . . ,Xz} where Ξν ∩ Ξµ = 0 for µ , ν = 1, 2, . . . (13)

M(Ξν) =M(X j) +M(Xk) + . . . +M(Xz) (14)

fUC(Ξν) =M(Ξν)/[
∑

µ

M(Ξµ) +
∑

a

M(Xa)] whereXa < Ξµ (15)

fQC(Ξν) = fUC(Ξν) ∧ fQC(Xa) = fUC(Xa) for all ν, a (16)

qΞν =
1
m

m∑

i∈Ξν
qQC,i ∧ qXa =

1
n

n∑

i∈Xa

qQC,i . (17)

In this approximation atomic types and ungrouped atomic sitesXa are treated exactly
in the same way. Equations 16 and 17 replace the exact conditions 11 and 12, respec-
tively. A good choice for an atomic type is the grouping of twoor more sites which
contain the same element in the same oxidation state and in a similar coordination en-
vironment. The scheme is still independent of formal charges and the charge mismatch
relative to the exact treatment (eq. 11) is expected to be small. Thus, more compact
clusters may be constructed. An example for atomic groupingin EEIM calculations is
given in section 6.1, where we group the two different sites Mg1 and Mg2 in Mg2P4O12

to the type “Mg”.
The important idea behind the previous directives is that there is a physically moti-

vated reason to preferqQC = 0 in an embedded QC setup – not onlyqtot=0 as advocated
in numerous works. A charged QC more likely has a bigger charge mismatch, which
is particularly disadvantageous in an EIM scheme where the mismatch is transferred
also to the embedding charges. Another advantage of an uncharged QC is that it does
not interact with the embedding field via its zeroth electrical moment. Compared to
a charged QC this usually reduces the electrostatic interaction energy, and hence the
error portion that is introduced by approximating the quantum mechanical with the
classical electrostatic interaction. In some cases it may be impossible to create an
uncharged QC. In order to keep the charge mismatch small we recommend to con-
struct QCs withqQC as low as possible, chosen on the basis of atomic charges derived
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from population analysis. Without mentioning the physicalmotivation above, electro-
neutral QCs were chosen already in several (but not all) EIM/cluster calculations20,23.

Improvement of the embedding quality. Apart from restoring charge neutrality
the benefit of treating a bigger region around the nuclei of interest on a quantum me-
chanical rather than an electrostatical level is that the inner part of the QC is exposed
to an improved potential which includes also exchange interaction. Moreover, inser-
tion of a buffer zone at the QC boundary helps to reduce the artificial distortion of
the electron density induced by close contacts between electrons in orbitals and point
charges.

Our current strategy is to use a “locally dense basis”, i.e. an extended set of AO
basis functions in the region where the nucleus with the shielding tensor of interest
is located and a (gradually) reduced AO expansion at fartherdistances. At the QC
boundary the AO expansion is usually reduced to minimal, compact basis sets and a
PP approximation for the inner shells. The inflexibility of the minimal basis prevents
larger artificial distortions and is beneficial with respectto computational resources.
Locally dense bases are well established in non-embedded NMR calculations95,96.

Generalization to networked solids. It has been claimed that the traditional EIM
or EIM/cluster cannot be applied to crystals composed of covalent networks1. In view
of the systematic expansion described above there should beno general problem in
calculating such networks. Naturally an error is introduced at the QC boundary where
a covalent bond has to be broken. However, if this defect is located at far distance from
the nucleus of interest, its effect on the shielding tensor will be small. In section 6.4 we
present a calculation on magnesium ultra phosphate, MgP4O11, in which the phosphate
units are part of an infinite network. Problems are expected in networks with electron
delocalization, where the defect might not be localized anymore. Saturation of the
dangling bonds with suitable terminators might give an improvement in such cases.

Formalization of the QC construction. A fixed scheme for QC construction has
the advantage, that the quality of the calculation is determined by few parameters and
that the results in a series of calculations are better comparable to each other. The
crystal structure must be known. Then, we use the following guidelines:

1. A spatial originr0 of the QC must be chosen. Often the choice isr0 = rX, i.e. the
position of nucleusX for which we intend to calculate the magnetic shielding
σX. If we want to obtainσ for several nucleiX1, X2, . . .Xn in one calculation we
may chooser0 = 1

n

∑n
i rXi

. In case of larger distances|rXi
− rX j

| one will usually
decide to split the problem in two or more separate QCs.

2. If a pointrs of higher point group symmetry is present close tor0 chosen in 1 one
might prefer to reassignr0 = rs in order to create a QC with higher symmetry.

3. The locality ofσX suggests that the QC should be roughly expanded in spherical
shells aroundrX. A sphere with radiusR aroundr0 is filled with atomic sites.
Typically,R = 3.0−5.5Å so that the second to third coordination sphere around
X is complete.
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4. Covalent fragments formed in 3 are completed – if possible –in order to avoid
dangling bonds in the vicinity ofX. Further atoms are added in order to fulfill
equations 11 or 16 that assureqQC = 0. The QC border line should be drawn
between atoms with ionic interactions, since these have less directional character
and are therefore expected to be better replaceable by a point charge interaction.

5. The cartesian coordinates of the QC (and the fractional coordinates of the UC)
are translated so thatr0 = (0, 0, 0). This is required by theEwald program, see
section 3.1.

6. A quantum chemical method and a locally dense basis have tobe chosen, which
are able to describe the wave function in the region of the nuclei of interest with
sufficient accuracy. In many cases electron correlation needs to be considered.
Currently, we favor hybride DFT due to its good cost/performance ratio.

The creation of a locally dense AO set is based on a distance criterion from
a reference point. In our implementation,K different reference points{rre f ,k}
(k = 1, 2, . . .K) may be defined simultaneously. A common choice is{rre f ,k} =
{rXi
}. Then,M different radial shells with a shell rangerm ∈ [rmin,m, rmax,m[,

(m = 1, 2, . . .M, rmax,m ≥ rmin,m+1) are defined around eachrre f ,k. Atoms located
in the different shells form disjoint sets† and for each set an AO basis definition
is given. By default the basis definition applies to all atoms of the shell, but a re-
striction to certain atom types is possible,too. Pseudopotentials can be assigned
in the same manner.

An AO set of valence triple-ζ quality plus a double set of polarization functions
should be considered as minimum requirement for the innermost shell (m = 1),
which contains the nuclei{Xi} of interest and usually their nearest bonding part-
ners. The use of pseudopotentials in this region should be avoided. For shells
with higherm the basis set quality is reduced. Compact AOs are advisable at
the QC boundary. For example, Fig. 6 shows the shell and basisdefinition for
the EEIM calculation on the[Mg2P4O12]3 cluster (discussed in more detail in
section 6). The nearest distance relative to one of the four central P atoms de-
cides upon the basis set assignment. Below 2.0Å a 6-311G(3df,3pd) basis is as-
signed, from 2.0 up to 4.7Å a 6-31G(d,p) basis, and for distances equal or larger
4.7Å a CEP-4G basis with corresponding pseudopotentials, supplemented by a
d-function for each P atom.

† If K > 1 each pointr in space is assigned to a specific reference pointrre f ,k for which |r − rre f ,k| = min .
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Figure 6: Automated assignment of AOs and PPs in spherical regions around 31P
atoms in the[Mg2P4O12]03 cluster (Mg: cyan, P: magenta, O: red). Innermost
region: 6-311G(3df,3pd) basis, second region: 6-31G(d,p)basis, remaining
part: CEP-4G+(d) AO+PP set.

4 Computational Details

General information. The DIAMOND (ver 2.0h) program97 was used to extract
suitable quantum clusters (QCs) from the crystal structures. The program permits the
filling of spherical shells around arbitrary centers and automatic completion of cova-
lently bound fragments. QC and unit cell (UC) information is exported in fractional
coordinates to separate files. A file for the automatized setup of a locally dense basis
is created that contains reference points, radial shells and basis set definitions.

A collection of shell scripts and small Perl programs98 then prepares input files for
EWALD and the electronic structure program. In a first step the fractional coordinates
of the UC and the QC are translated in order to locate the nuclei of interest near the
origin. Second, the fractional QC coordinates are transformed to cartesian ones via

r f ract.coord.
↔
T = rcart.coord . (18)

The transformation matrix
↔
T from fractional to cartesian coordinates is determined
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from the unit cell parametersa, b, c, α, β, γ according to99

↔
T =




a 0 0
b cos(γ) b sin(γ) 0
c cos(β) c(cos(α)−cos(β) cos(γ))

sin(γ)
V

a·b sin(γ)


 (19)

with V = a · b · c ·
√
1 − cos2(α) − cos2(β) − cos2(γ) + 2 cos(α) cos(β) cos(γ) (20)

Third, input files for the electronic structure program are generated which define the
QC with a locally dense basis and the initial embedding charge field. The master
program for the EEIM SCF procedure shown Fig. 2 is a shell script in order to allow
flexible user interaction on compute clusters with queueingsystems.

All electronic structure calculations were performed withthe GAUSSIAN 03 pack-
age41. The hybride density functional mPW1PW100 was used throughout with tight
convergence criteria for the SCF, corresponding to maximum deviations in density
matrix elements of10−6 and in the energy of10−6 Hartree. Quadrature in the DFT cal-
culations was performed on a pruned grid of 99 radial shells and 590 angular points per
shell on each atom. Absolute nuclear magnetic shielding tensors

↔
σ were obtained with

the GIAO formalism88. Atomic charges were obtained by NBO population analysis101.
Calculations on NaF. The Fm3̄m symmetric crystal structure data was taken

from102 as published in the ICSD database103. The Na-F distance amounts to 2.307Å.
Selected clusters are shown in Fig. 4. Calculated19F chemical shifts are given ac-
cording to IUPAC recommendations104 on a scale relative to the reference compound
CFCl3

δ =
ν − ν(ref)
ν(ref)

=
σ(ref) − σ
1 − σ(ref)

≈ σ(ref) − σ (21)

but we used gaseous hydrogen fluoride (HF) as secondary reference. The gas-phase
structure (rg(H-F)=0.9169Å) was taken from105. The experimental gas-phase shift of
δexp.(HF)=-221.34 ppm was reported in106. Conversions from the absolute shielding
scale to the chemical shift scale were performed by

δ
19F
calc. = σ

19F
calc.(HF) − σ19F + δ19Fexp.(HF) (22)

Calculations performed at mPW1PW/6-31G(d,p) level are certainly not accurate enough
to predict19F shifts reliably within 1 ppm (, which is seemingly suggested by the pre-
sented results). As we were mainly interested in the relative shifts between various
clusters the level seems to be sufficient, however.

Calculations on magnesium phosphates. Experimentally determined crystal
structures107–110were used for the calculations without further structural optimization.
Clusters were constructed according to the guidelines givenin section 3.3 with locally
dense basis sets defined by radial shells around the nuclei ofinterest (see section 3.3).
Basis functions of the 6-311G(3df,3pd) set41,111–113were used for the innermost shell,
functions of the 6-31G(d,p) set114–116for the second shell (if present) and functions of
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the CEP-4G set with pseudopotentials117 for the third shell (if present). The CEP-4G
set of phosphorus was supplemented with ad-function from the 6-31G(d,p) set (gaus-
sian exponent = 0.55a−20 ). Calculated31P chemical shifts are given according to104 by
eq. (21) with 85% H3PO4 as reference compound. The computational treatment of this
reference is difficult, however. Therefor we assumed a linear relation between quantum
chemically calculated magnetic shieldings and experimental 31P chemical shifts

σ
31P
calc. = A + B · δ31Pexp. . (23)

The parametersA = 303.29 ppm andB = −1.1174 were determined from a least
squares fit of 23 calculated and experimental data from 19 small phosphorus molecules
that cover the whole31P isotropic chemical shift range. The fit had a standard devi-
ation of SD = 9.56 ppm. Calculations were performed on mPW1PW level with 6-
311G(3df,3pd) basis functions at all centers. Experimentally determined molecular
structures were used in order to account for vibrational effects. Solving eq. (23) forδ
gives the final expression used for the calculation of isotropic chemical shifts and shift
tensor eigenvalues

δ
31P
ii,calc. =

σ
31P
ii,calc.
− 303.29ppm

−1.1174 , i = 1, 2, 3 (24)

At mPW1PW/6-311++G(3df,3pd) level the optimized parameterswereA = 302.99 ppm,
B = −1.1147 (SD = 9.88 ppm) and at mPW1PW/6-31G(d,p) levelA = 371.87 ppm,
B = −1.0058 (SD = 17.25 ppm). More details on the fits are given in the supplemental
material.

5 Experimental Details

Synthesis. The educts magnesium orthophosphate octahydrate (Mg3(PO4)2 ·8H2O),
magnesium hydrogen phosphate trihydrate (MgHPO4 · 3H2O), and diammonium hy-
drogen phosphate ((NH4)2HPO4) were obtained from cfb Budenheim (Budenheim,
Germany). P4O10 was obtained from Riedel-de-Haën (Seelze, Germany). Unless noted
otherwise the reactions were carried out in an open, Y2O3-stabilized ZrO2 crucible
placed in a tube furnace with temperature sensor and external heat program controller.

Synthesis of α-Mg3(PO4)2. α-Magnesium orthophosphate was prepared by heating
5.055 g (0.012 mole) Mg3(PO4)2 · 8H2O within 5 h to 1173 K and keeping the sample
at that temperature for 12 h. A white powder was obtained.

Synthesis of α-Mg2P2O7. α-Magnesium diphosphate was prepared by heating 5.1 g
(0.029 mole) MgHPO4 · 3H2O within 5 h to 1173 K. The final temperature was kept
for 4h. After cooling to room temperature a white powder was obtained. The31P NMR
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spectrum showed impurities at -0.2 and -18.8 ppm which are assigned toα-Mg3(PO4)2
and the high-temperature phaseβ-Mg2P2O7, respectively. A weak signal is also present
at 2.1 ppm which belongs probably to an orthophosphate.

Synthesis of Mg2P4O12. Magnesium cyclotetraphosphate was prepared by heating
a mixture of 1.761 g (0.013 mole) (NH4)2HPO4 and 2.324 g (0.013 mole) MgHPO4 ·
3H2O were ground to a fine powder. The mixture was heated within 20h to 1273 K and
kept at this temperature for 5 h. A white, partly agglomerated powder was obtained
after cooling.

Small impurities of magnesium diphosphate were found in theproduct, which
appeared as signals at -13.6 and -19.7 ppm (α-Mg2P2O7) as well as -18.7 ppm (β-
Mg2P2O7) in the 31P NMR spectrum. The impurity phases were also confirmed by
reflexes in the diffractogram. Mg2P2O7 is build as side product during synthesis of
Mg2P4O12 via

2 MgHPO4 → Mg2P2O7 + H2O. (25)

Integration of the31P NMR signals in the quantitative spectrum at 25 kHz gives an
estimate of less than 3 mole-% phosphorus in the impurity phases.

Synthesis of MgP4O11. Magnesium ultraphosphate was prepared according to

4 MgHPO4 · 3H2O+ 3 P4O10
600◦C−→ 4 MgP4O11 + 14 H2O ↑ (26)

A mixture of 1.1024 g (0.0063 mole) MgHPO4 · 3H2O and 5.9831 g (0.0211 mole)
P4O10 was put in a Au-Pd crucible. The sample was heated for 7 d at 873K. After
cooling the excess of P4O10 was removed by boiling the sample for 1 h in a beaker
with 100 ml water, filtering and washing the filtrate with ethanol. Small plates of
white, slightly grayish color remained which were dried in vacuum.

X-ray diffraction. Powder diffractograms were recorded on a STOE Stadi P pow-
der diffractometer (Cu-Kα1, λ=154.05 pm). All synthesized compounds and impurity
phases were identified with diffraction patterns in the StoeWINPOW data base118.

NMR. 31P MAS NMR spectra were recorded either on a Bruker Avance II 200spec-
trometer with a 4.7 T magnet and a commercial MAS probe for 2.5mm rotors or on a
Bruker Avance 500 DSX spectrometer (11.75 T magnet) with commercial MAS probes
for 2.5 or 4 mm rotors. ZrO2 rotors were used. Chemical shifts are given relative to
the reference compound 85% H3PO4 (T=298 K) as an external standard. Calibration
of the spectrometers was done with tetramethylsilane (TMS)under MAS conditions
using the unified scale and the chemical shift definitions in104. Typically, spectra were
recorded by direct excitation with 90◦ pulses of a fewµs length. Various number of
scans (up to 600) and repetition delays (up to 1024s) were used to obtain a satisfactory
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signal/noise ratio. Isotropic chemical shiftsδiso = (δ11 + δ22 + δ33)/3 were taken di-
rectly from NMR spectra at high MAS frequenciesνMAS, typically 25 kHz. Chemical
shift anisotropy (CSA) parameters were determined from slowly rotated MAS spectra
with the procedure described in2, where powder spectra simulated with the SIMPSON

program119 are fitted to experimental ones. Dipolar interactions between the nuclear
spins were neglected in all simulations. Simulation of a four-spin system including
direct dipolar interactions between the four nearest distant 31P nuclei (distances from
crystal structure) showed that this approximation is valideven for the very slow MAS
spectrum ofα-Mg3(PO4)2.

CSA results are given according to theHaeberlen-Mehring-Spiessconvention120,
i.e. in terms of the reduced anisotropyδaniso = δPAFcc − δiso and the asymmetryη =
(δPAF

bb
− δPAFaa )/δaniso, where the shift tensor principal axes eigenvaluesδPAF11 , δPAF22 , δPAF33

have been sorted according to|δPAFcc − δiso| ≥ |δPAFaa − δiso| ≥ |δPAFbb
− δiso|. The rms

deviation of the values is estimated to±0.1 ppm forδiso, ±4 ppm forδaniso, and±0.04
for η.

6 Results

In the following subsections we apply the EEIM to the calculation of 31P shield-
ing tensors in the crystalline compounds Mg2P4O12, α-Mg3(PO4)2, α-Mg2P2O7, and
MgP4O11, whose crystal structures have been described in107–110. Structure data and
atomic site labelling was taken from the ICSD data base103, entries 4280, 31005,
15326, 300214, respectively. The atomic labels are used in the subsequent presen-
tation of the results. For ease and in order to avoid ambiguities we show the unit cells
in the supplemental material.

All compounds were resynthesized and the powdered samples were characterized
by their X-ray diffraction pattern as well as31P MAS NMR spectrocopy. Experimental
31P chemical shift tensor eigenvalues were obtained from slowly rotated MAS spectra.
In spite of the similarity in their chemical composition, the four phosphates are quite
different with respect to the chaining pattern of PO4 tetrahedra which allows us to
demonstrate the different strategies for the cluster construction. According to theQn

nomenclature introduced in121 (n gives the number of bridging oxygen atoms of a
PO4 tetrahedron to neighboring tetrahedrons) the compounds inthe order above are
composed ofQ2, Q0, Q1, and infinitely chainedQ2/Q3 units. The differentQn groups
can be easily distinguished by means of their significantly different 31P chemical shift
and CSA parameters122. All crystals except forα-Mg3(PO4)2 possess more than one
P-site of the sameQn type, whose isotropic chemical shifts are only slightly different.
The EEIM calculations allow the assignment of the NMR signals to the sites.
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6.1 Magnetic shielding tensor in Mg2P4O12

The crystal structure107 of magnesium cyclotetraphosphate, Mg2P4O12, containsCi

symmetric tetraphosphate rings,[P4O12]4−, in half-chair conformation which contain
two times the two independent crystallographic P sites (P1,P2) and the six indepen-
dent O sites (O1–O6). Each P- and O-site occurs eight times inthe unit cell. Two
independent Mg sites are present (Mg1,Mg2), each occurringfour times in the unit
cell.

The NMR spectrum is shown in Fig. 8. Two signals PA and PB are observed at
δ=-34.6 ppm andδ=-36.8 ppm, respectively, which agree with the rough valuesgiven
in123. Experimental CSA parameters of PA and PB are collected together with calcu-
lated ones in Tab. 1.

Various quantum clusters (QCs) shown in Fig. 7 are used for EIM, EEIM and non-
embedded cluster calculations. Details of the cluster setup and figures of two addi-
tional clusters –[Mg2P4O12]07 and[Mg2P4O12]013 – used to demonstrate the convergence
of the QC expansion are given in the supplemental material. All QCs areCi symmetric
so that artificial dipole moments are avoided. A locally dense basis is used where the
central P4O12-ring is described with 6-311G(3df,3pd) bases or better andthe farther
distant atoms are described with 6-31G(d,p) bases or even a minimal CEP-4G valence
bases with pseudopotentials for the core electrons. The QC[P4O12]4− (Fig. 7a) is the
usual choice for the traditional EIM procedure. As it does not contain Mg sites, the em-
bedding charges corresponding to Mg have to be fixed to +2 in order to ensure charge
neutrality of the unit cell. The second QC[Mg2P4O12]0 (Fig. 7b) contains one formula
unit of the compound. It does not contain the atomic site Mg2,however, and therefore
we use theatomic groupingMg={Mg1,Mg2} so thatq(Mg2)= q(Mg1) is enforced for
the Ewald summation. The correct 1:1 ratio of crystallographic Mg1, Mg2 sites is
also not present in QCs[Mg2P4O12]03 (Fig. 7c, Mg1:Mg2=2:4),[Mg2P4O12]05 (Fig. 7d ,
Mg1:Mg2=6:4),[Mg2P4O12]07 (Mg1:Mg2=8:6), and[Mg2P4O12]013 (Mg1:Mg2=12:14),
all of which have been calculated with the same atomic grouping. While Mg1 and
Mg2 sites (Wyckoff symbols4e and4d, repectively) occur in the UC only with half
frequency relative to the other atomic sites (Wyckoff symbol 8 f ), the grouped type
Mg occurs with the same relative frequency of eight. The clusters were constructed
in a semiautomatic manner, e.g.[Mg2P4O12]013 was created by filling spheres with a
radiusrP = 5Å around the four P-atoms of the central P4O12 ring. Then, the covalent
fragments were completed and a proper amount of Mg atoms was added in order to
make the QC neutral.

The EEIM results are superior to EIM. The results of the different cluster calcu-
lations are compared in more detail in section 6.5. Here, we focus on the chemi-
cal shift tensor eigenvalues calculated with the QC[Mg2P4O12]05 which are given in
Tab. 1 and which suggest the following assignment between experimental NMR sig-
nals and crystallographic sites: PA belongs to P1, and PB belongs to P2. This results
in a root mean square deviation ofRMSD(δexp

iso
, δcalc

iso
) = 1.1ppm between experimen-

tal and calculated isotropic chemical shifts andRMSD(δexp
ii
, δcalc

ii
) = 5.9ppm between
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the principal axis values. The reverse assignment would result in bigger deviations
(RMSD(δexp

iso
, δcalc

iso
) = 2.2ppm,RMSD(δexp

ii
, δcalc

ii
) = 8.4ppm). Further confidence for

the assignment PA↔ P1, PB↔ P2 comes from the fact that any other of the embedded
calculations lead to the same result.
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Figure 7: Various Mg2P4O12 clusters. (a): [P4O12]4−, (b): [Mg2P4O12]01, (c):
[Mg2P4O12]03, (d): [Mg2P4O12]05. Central P atoms with off-centered labels
denote reference points for the local expansion.
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Table 1: Calculated and experimental31P chemical shift parameters of various mag-
nesium phosphates. Pairs of subsequent lines give the assignment of crystal-
lographic sites to NMR signals. Calculated values use the site labelling of the
crystal structures referenced in the text, experimental signals are labelled in
Fig. 8. For convenience CSA the principal axes values are given in col. 6-8.

Calc.
No

site/
signal

δiso
ppm

a δaniso
ppm

a

η
δ11
ppm

a δ22
ppm

a δ33
ppm

a

magnesium cyclotetraphosphate, Mg2P4O12
calc.b P1 -33.8 -118 0.469 53.1 -2.3 -152.1
exp. PA -34.6 -124 0.459 55.9 -1.0 -158.6

calc.b P2 -35.5 -127 0.401 53.0 2.4 -162.1
exp. PB -36.8 -134 0.475 61.7 -1.7 -170.4

magnesium orthophosphate, α-Mg3(PO4)2
calc.b P1 -5.8 -9 0.787 2.5 -4.8 -15.1
exp. P -0.1 -16 0.640 12.7 2.7 -15.8

magnesium diphosphate, α-Mg2P2O7

calc.b P1 -23.4 78 0.408 54.7 -46.5 -78.4
exp. PB -19.7 85 0.321 65.4 -48.6 -75.9

(exp.c PB -20.2 84 0.3 63.8 -49.6 -74.8)
calc.b P2 -14.3 58 0.052 43.7 -41.8 -44.9
exp. PA -13.4 68 0.162 54.7 -42.0 -53.0

(exp.c PA -13.8 71 0.1 57.2 -45.8 -52.9)
magnesium ultraphosphate, MgP4O11
calc.b P1 -39.2 -163 0.312 68.0 16.9 -202.5
exp. PA -38.4 -174 0.361 80.3 17.4 -212.8

(exp.d PA -38.7 -174 0.33 77.0 19.6 -212.7)
calc.b P2 -44.0 -132 0.172 33.4 10.7 -176.2
exp. PC -45.5 -147 0.183 41.6 14.6 -192.7

(exp.d PC -46.1 -150 0 28.9 28.9 -196.1)
calc.b P3 -51.6 -128 0.130 20.8 4.2 -179.7
exp. PD -51.2 -141 0.219 34.5 3.8 -192.0

(exp.d PD -51.7 -144 0 20.3 20.3 -195.7)
calc.b P4 -43.1 -155 0.354 62.0 7.0 -198.4
exp. PB -43.3 -171 0.396 76.1 8.3 -214.4

(exp.d PB -43.7 -174 0.33 72.0 14.6 -217.7)
a chemical shifts calculated from absolute magnetic shieldings according to eq. 24.
b only calculated values for the central P-atom(s) are given (labelled in
figures), even if more P-atoms are present in the cluster
c literature data from124. Other data for PA are: δiso=-14.0 ppm from125

or δiso=-14.7 ppm from126; other data for PB are:δiso=-20.3 ppm from125,
-20.0 ppm from126.
d literature data from125
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Figure 8: Solid state31P-MAS-NMR spectra of magnesium phosphates. Regions of
the isotropic bands are highlighted by a star (⋆) and are enlarged in an in-
set. Sample impurities denoted by a circle (◦) are discussed in section 5.
From top to bottom: Mg2P4O12 (νMAS=6 kHz, B0=11.75 T, inset: 25 kHz,
B0=4.7 T), α-Mg3(PO4)2 (νMAS=600 Hz, B0=11.75 T, inset:νMAS=3 kHz),
α-Mg2P2O7 (νMAS=5 kHz, B0=11.75 T), MgP4O11 (νMAS=2 kHz, B0=4.7 T,
inset:νMAS=25 kHz).
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6.2 Magnetic shielding tensor in α-Mg3(PO4)2
The unit cell ofα-magnesium phosphate,α-Mg3(PO4)2, contains the seven sites Mg1,
Mg2, P1, O1, O2, O3, O4 with the frequencies 4, 2, 4, 4, 4, 4, 4, respectively108.
The crystal is composed of[PO4]3− anions (Q0-phosphate) surrounded by seven Mg2+

cations in the next coordination sphere.
The 31P MAS NMR spectrum at 3 kHz shows the center signal atδ=-0.1 ppm.

CSA parameters are obtained from the MAS-NMR spectrum shown in Fig. 8, where
the MAS frequency was reduced to 600 Hz in order to obtain a sufficient number of
rotational side bands necessary for a reliable determination of such small anisotropies.
Experimental CSA values are given together with calculated ones in Tab. 1.

Quantum clusters shown in Fig. 9 are used for non-embedded and (E)EIM cal-
culations. Details of the cluster setup are given in the supplemental material. The
charged phosphate unit[PO4]3− (Fig. 9a) displays the usual choice for an EIM proce-
dure. Atomic charges are redistributed on the P and the O sites, whereas the charges
on Mg have to be fixed to the formal charge +2 (enforced by QC charge definition
and UC electroneutrality). The QCs[Mg3(PO4)2]01 (Fig. 9b),[Mg3(PO4)2]05 (Fig. 9c),
and [Mg3(PO4)2]08 (Fig. 9d) are designed according to EEIM recommendations, i.e.
they are electroneutral and contain the atomic sites with the same relative frequency as
the UC. Among the non-embedded calculations only QC[PO4]4− shows accidentally
a reasonable result (RMSD(δexp

ii
, δcalc

ii
)=6.0 ppm), whereas the remaining ones display

unrealistic NMR parameters (RMSD(δexp
ii
, δcalc

ii
)=40.6, 24.0 ppm for[Mg3(PO4)2]01 and

[Mg3(PO4)2]05, respectively) or convergence problems ([Mg3(PO4)2]08).
EIM and EEIM calculations lead to comparable results. The EIM calculation yields

RMSD(δexp
ii
, δcalc

ii
)=7.7 ppm. The smallest possible neutral QC,[Mg3(PO4)2]0, gives

the best result (RMSD(δexp
ii
, δcalc

ii
)=6.5 ppm), although the nearest coordination sphere

around the central phosphate ion is only partially filled. Anacceptable result is also
obtained with the QC[Mg3(PO4)2]05 with RMSD(δexp

ii
, δcalc

ii
)=7.4 ppm. Corresponding

shift parameters are collected in Tab. 1. The result from QC[Mg3(PO4)2]08 is slightly
worse (RMSD(δexp

ii
, δcalc

ii
)=7.7 ppm).
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Figure 9: Clusters chosen for EEIM calculations onα-Mg3(PO4)2. (a): [PO4]3− (b):
[Mg3(PO4)2]0, (c): [Mg3(PO4)2]05. (d): [Mg3(PO4)2]08. The central phos-
phate unit is highlighted with atomic site labels from the crystal structure.

6.3 Magnetic shielding tensor in α-Mg2P2O7

Crystal structures ofα-magnesium diphosphate,α-Mg2P2O7, have been reported by
Calvo109 and Łukaszewicz127. In this work the probably more reliable structure of
Calvo is preferred as well as the site labelling given there. The unit cell ofα-Mg2P2O7

contains eight formula units with two independent P-sites (P1,P2), seven O-sites (O1–
O7) and two Mg-sites (Mg1,Mg2). Of the two P atoms in a diphosphate anion[P2O7]4−

(Q1 phosphate) the P2 atom has the shorter distance to the bridging oxygen.
The31P MAS NMR spectrum shows two isotropic signals at -13.4 (signal PA) and

-19.7 ppm (PB). Experimental31P CSA parameters were determined from the slow-
MAS NMR spectrum in Fig. 8 and are collected in Tab. 1. The CSA values are in
fair agreement with earlier determinations124–126,128, except for the most recent, but
probably wrong, work of Morenoet al.129 where only a single31P signal withδiso=-
5.9 ppm (δ11=74 ppm,δ22=-21 ppm,δ33=-71 ppm) is mentioned. This signal could
belong to one of two P-sites in the hydrate Mg2P2O7 · 3.5H2O whose chemical shift
was reported at -5.44 ppm in130. Our sample shows a significant fraction of the high-
temperature phaseβ-Mg2P2O7

131,132 (signal PC at 18.8 ppm) that was included in the
fit procedure.

Non-embedded, EIM and EEIM calculations were performed using the quantum
clusters shown in Fig. 10. The[P2O7]4− cluster is the common choice for traditional
EIM calculations. The uncharged QC[Mg2P2O7]09 was constructed in an semiauto-
matic manner according to EEIM recommendations: First, a[P2O7]4− ion was se-
lected. Second, the ion was augmented with sites that fall inspheres with a radius of
5Å around the two P-nuclei. Third, anionic fragments were completed and electroneu-
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trality was achieved by adding the proper amount of Mg counter ions. No symmetry
was used in the construction of the QC. Details of the QC setup are given in the sup-
plemental material.

The 31P NMR chemical shifts calculated with the EEIM show the best agree-
ment with the experimental results and are given in Tab. 1. Values of the EIM cal-
culation are significantly too shielded (δiso(P1) =-28.4 ppm,δiso(P2) =-16.4 ppm),
probably due to the charge mismatch in[P2O7]4−. The non-embedded calculations
show a worse agreement or convergence problems. The assignment of NMR sig-
nal PA to the crystallographic site P2 and signal PB to site P1 is unambigous, since
RMSD(δexp

ii
, δcalc

ii
)=7.2 ppm whereas the inverse assignment would have

RMSD(δexp
ii
, δcalc

ii
)=18.9 ppm. All other calculations based on Calvos structure lead to

the same assignment. Moreover, the assignment PA↔P2, PB↔P1 is also obtained from
EEIM calculations based on the crystal structure of Łukaszewicz, but the deviation
between experimental and calculated shift tensor eigenvalues is larger
(RMSD(δexp

ii
, δcalc

ii
)=7.9 ppm).
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Figure 10: Quantum clusters ofα-Mg2P2O7 used in (E)EIM calculations. (a):
[P2O7]4−, (b): [Mg2P2O7]09. P atoms with off-centerd labels denote ref-
erence points for the local expansion.

6.4 Magnetic shielding tensor in MgP4O11

The unit cell of magnesium ultraphosphate, MgP4O11, containsZ = 4 formula units,
one magnesium site (Mg1), eleven oxygen sites (O1–O11), andfour phosphorus sites
(P1–P4)110. The crystallographic sites P2 and P3 areQ3 phosphates, whereas the sites
P1 and P4 areQ2 phosphates.

The31P MAS NMR spectrum in Fig. 8 shows four central peaks at PA=-38.4 ppm,
PB=-43.3 ppm, PC=-45.5 ppm and PD=-51.2 ppm, which is in fair agreement with pre-
vious data of Feikeet al.125. Experimental31P CSA parameters were determined from
the slow-MAS spectrum and are given in Tab. 1.

Since the phosphate tetrahedra in MgP4O11 form an infinite polymeric network, it
is impossible to select a covalently saturated, formally charged ion as required by the
conventional EIM approach. In contrast, the EEIM guidelines allow to choose various
clusters. As the distance between the four different P sitesin the unit cell is rather big
for building a single cluster containing all sites, we splitthe problem into two separate
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calculations. With the first QC of the sum formula[MgP4O11]06 (see Fig. 11a) we focus
on the NMR parameters for P1 and P2 sites. Values of P3 and P4 sites are not expected
to be reliable in these calculations as the sites are described only with a 6-31G(d,p)
basis and are located near the cluster boundary where dangling bonds are present. The
second QC,[MgP4O11]05 (Fig. 11b), is constructed to obtain reliable NMR parameters
for P3 and P4, whereas parameters for the P1 and P2 sites are unreliable. Details of
the cluster setup are given in the supplemental material.

The non-embedded calculation on[MgP4O11]06 showed no convergence, so that a
complete set of31P NMR parameters for MgP4O11 could only be obtained from EEIM
calculations. The results are collected in Tab. 1 and allow acomplete assignment of
experimental NMR signals to crystallographic sites:† The calculated order of isotropic
chemical shifts suggests that resonance PA corresponds to site P1, PB to site P4, PC to
P2 and PD to P3 (RMSD(δexp

iso
, δcalc

iso
)=0.9 ppm). Any other assignment would result in a

biggerRMSD(δexp
iso
, δcalc

iso
). Comparison of experimental and calculated CSA parameters

supports our assignment (RMSD(δexp
ii
, δcalc

ii
)=10.8 ppm). Again, any other assignment

would lead to a biggerRMSD(δexp
ii
, δcalc

ii
). Further confirmation comes from the31P

2D double quantum spectrum in125, which shows a connectivity chain PA-PC-PD-PB.
According to our assignment this corresponds to the site chain pattern P1-P2-P3-P4,
which is indeed found in the crystal structure.
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Figure 11: Quantum clusters for the calculation of NMR parameters in magnesium
ultraphosphate. (a):[MgP4O11]06 cluster for calculation of P1 and P2 sites,
(b): [MgP4O11]05 cluster for calculation of P3 and P4 sites. Phosphorus
sites with off-centered labels denote reference points forthe locally dense
basis expansion.

† A partial assignment was already presented in the work of Feike et al., where – on the basis of CSA
parameters – PA and PB were related toQ2 sites and PC and PD toQ3 sites.
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6.5 Comparison of non-embedded, EIM and EEIM calculations

A more accurate description of NMR parameters is expected from EEIM calculations
in comparison to traditional EIM calculations, because thecharge misfit is avoided
and the quantum mechanically treated region is usually enlarged. Within the EEIM
framework there is always freedom in choosing a bigger QC, butthe question is if the
increased QC size pays off. Larger QCs are also commonly used in non-embedded
calculations in order to account for the most prominent long-range terms7,133. In the
limit of infinitely large QCs EEIM and non-embedded calculations give the same re-
sult. It is therefore interesting to investigate the convergence of the NMR parameters
with respect to the QC size for EEIM and non-embedded calculations.†

For this purpose we expanded the series of QCs for Mg2P4O12 (section 6.1, Fig. 7)
with two further elements,[Mg2P4O12]07 and[Mg2P4O12]013. Figures and details of the
cluster setup are described in the supplemental material. Fig. 12 shows the dependence
of the root mean square deviationRMSD(δexp

ii
, δcalc

ii
) of chemical shift tensor eigenval-

ues with respect to the QC size. In case of non-embedded cluster calculations widely
varying values occur for different QC sizes, which indicates that convergence is diffi-
cult to achieve in such an approach. TheRMSD(δexp

ii
, δcalc

ii
) is significantly higher than

in EEIM calculations. The failed convergence with QC[Mg2P4O12]013 displays another
problem of non-embedded calculations.

The situation is much more satisfacory for embedded calculations, where the vari-
ation in eigenvalues for different QC choices is considerably smaller. The traditional
EIM calculation gives already a reasonable result (RMSD(δexp

ii
, δcalc

ii
)=11.4 ppm) that

allows the signal assignment. Further improvement is achieved in the series of EEIM
calculations using [Mg2P4O12]01, [Mg2P4O12]03, and [Mg2P4O12]05 where
RMSD(δexp

ii
, δcalc

ii
) decreases monotonically from 10.0 ppm, over 6.7 ppm to 5.9 ppm.

Calculations with larger QCs show no improvement over[Mg2P4O12]05 and indicate
that the QC size is not the main source of error any more. The reason for the slight
worsening ofRMSD(δexp

ii
, δcalc

ii
) in [Mg2P4O12]07 (6.9 ppm) and[Mg2P4O12]013 (9.0 ppm)

is unclear so far. It might be related to the locally dense basis where an increased num-
ber of pseudopotentials is employed at farther distances from the reference points. The
neglect of core contributions to the magnetic shielding andthe wrong nodal structure
of the wave function at the remote centers might introduce a small but systematic er-
ror in the calculation of the magnetic shielding at the reference point. Another reason
might be polarization effects at the QC boundary.

Convergence with respect to the atomic basis expansion at thenuclei of interest was
investigated for[Mg2P4O12]05. Three radial shells were used in the default setup where
a 6-311G(3df,3pd) basis was used in the ranger1 ∈ [0, 2.5[Å, a 6-31G(d,p) basis in
the ranger2 ∈ [2.5, 5[Å, and a CEP-4G basis and PPs in the ranger3 ≥ 5Å, supple-

† In this section we omit a comparison of the EEIM with the EIM/cluster approach because, to the best
of our knowledge, a detailed strategy for cluster construction is absent in EIM/cluster, which may lead
to ambiguous results. Moreover, the calculation of large EIM clusters would be extremely expensive
without a locally dense basis.
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mented withd functions on P atoms in the range between 5.0 and 6.9Å. Very similar
results are obtained, when the 6-311G(3df,3dp) set in ranger1, i.e. at the atoms of the
central P4O12-ring, is augmented by diffuse functions to give the 6-311++G(3df,3dp)
set. The biggest deviation in a shielding tensor eigenvaluebetween the two calcula-
tions amounts to 0.9 ppm and the eigenvector orientations are identical within 0.2◦.
This indicates that diffuse basis functions are not required for a proper calculation
of NMR parameters in solids. Deviations ofδcalc

ii
with respect to the experimental

results turn out to be insignificantly smaller in the 6-311++G(3df,3dp) calculation
(RMSD(δexp

ii
, δcalc

ii
) =5.7 ppm), provided the specific parametersA andB for the 6-

311++G(3df,3dp) basis are used in conversion equation 24. Reducing the basis at the
atoms of the central P4O12-ring to 6-31G(d,p) quality leads to maximum deviation of
88.4 ppm in shielding tensor eigenvalues and to 1.4◦ in the eigenvector orientations.
The big change inσcalc

ii
is in parts a systematic basis set specific deviation, but con-

sidering the significant increase ofRMSD(δexp
ii
, δcalc

ii
) =11.4 ppm (δcalc

ii
calculated with

the 6-31G(d,p) basis set specific parameters in conversion equation 24) reveals that the
double-ζ basis is not flexible enough for the prediction of NMR parameters in a wider
range of phosphorus compounds.

A change of basis functions in the outermost radial shell hasa minor effect on
the calculated shielding tensors. This is demonstrated in aanother calculation on
[Mg2P4O12]05 where we replaced the CEP-4G basis in shell ranger3 of the default
calculation by a 6-31G(d,p) set. The resulting shielding tensor eigenvalues deviate by
less than 3.0 ppm from the default calculation and the eigenvectors coincide within
1.1◦. The chemical shift tensor eigenvalues deviate from the experimental ones by
RMSD(δexp

ii
, δcalc

ii
) =6.1 ppm. This indicates that at larger distances from the nuclei

of interest (> 5.0Å), pseudopotentials and minimal bases may be employed to save
computational resources without a significant loss in accuracy.
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Figure 12: Root mean square deviation of the six31P chemical shift tensor eigenvalues
in Mg2P4O12 calculated with various cluster models relative to the experi-
mental values.

Similar observations were made forα-Mg3(PO4)2, α-Mg2P2O7, MgP4O11. In total,
27 shift tensor eigenvalues were calculated by EEIM (see Tab. 1), 15 by EIM† and 21
by non-embedded cluster calculations‡ which are plotted against the experimental val-
ues in Fig. 13. Within the 15 eigenvalues that are available for all three types of cluster
calculations, EEIM performs best withRMSD(δexp

ii
, δcalc

ii
) =6.8 ppm. It improves the

RMSD(δexp
ii
, δcalc

ii
) =10.1 ppm of EIM by about13 . Non-embedded calculations give

the worst result withRMSD(δexp
ii
, δcalc

ii
) =21.2 ppm, although the best available results

were chosen when more than one non-embedded cluster calculation converged.
Taking into account all 27 data for EEIM, i.e. including the 12 eigenvalues from

the covalently networked MgP4O11, leads toRMSD(δexp
ii
, δcalc

ii
) =8.8 ppm, which is still

superior to theRMSD of EIM. This indicates that networked solids can be treated by

† The covalently networked MgP4O11 cannot be calculated by EIM. ‡ For cluster[MgP4O11]06
(Fig. 11a) the non-embedded cluster calculation did not converge.
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EEIM without a substantial loss in accuracy†. It should be noted that allRMSDs given
above were obtained withδcalc

ii
values derived from the general conversion equation

(24) that is valid for a larger31P shift range.
TheRMSDs are significantly smaller if only the shielding for the magnesium phos-

phates are taken into account in the fitting procedure‡, RMSD(δexp
ii
, δcalc

ii
)=4.3 ppm in

case of EEIM (δcalc
ii

= {σcalc
ii
− 307.19ppm}/ − 1.0237, N=27 eigenvalues),

RMSD(δexp
ii
, δcalc

ii
)= 4.4 ppm in case of EIM (δcalc

ii
= {σcalc

ii
− 311.25ppm}/ − 0.9905,

N=15) andRMSD(δexp
ii
, δcalc

ii
)= 21.1 ppm in case of non-embedded calculations (δcalc

ii
=

{σcalc
ii
− 309.33ppm}/ − 0.9508, N=21). Fig. 13 shows linear regression curves for the

corresponding fits in a plot ofδcalc
ii

versusδexp
ii

. Obviously, an error compensation takes
place for chemically similar compounds. Such a smallRMSD which is in the range of
the experimental error forδexp

ii
is probably not representative for the general accuracy

of the EEIM method. But even with the former value of 8.8 ppm theRMSD of EEIM
values is less than the standard deviation of 9.6 ppm derivedfor conversion equation
(24) where only isotropic shifts are used. This indicates that the shortcomings of the
quantum chemical method and the chosen atomic basis are probably more significant
than the errors introduced by the embedding scheme.

† Although the number of data points is rather small for a reliable statistical estimate, we be-
lieve that the decribed trends are correct. Unpublished results on further phosphorus compounds,
K3(PO2NH)3, Na3(PO2NH)3·H2O, (NH4)4(PO2NH)4 ·4H2O, Mg2(PO2NH)4 ·8H2O, LaPO4, La(PO3)3,
and LaP3O9 · 3H2O extend the data base to 45 shift tensor eigenvalues for EIM and 63 for EEIM.
For EIM we obtainedRMSD(δexp

ii
, δcalc

ii
) =9.8 ppm, whereas for EEIMRMSD(δexp

ii
, δcalc

ii
) =8.3 ppm.

‡ This type of “internal calibration” has been used in GIPAW calculations onβ− andγ−Ca(PO3)2 in
16. For the 24 eigenvalues presented in Table 1 of that work we calculateRMSD(δexp

ii
, δcalc

ii
)=8.4 ppm.
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In general, isotropic chemical shifts are calculated more accurately than shift tensor
eigenvalues. This comes in part from a statistical error compensation. The error∆δcalc

iso

in calculated isotropic chemical shifts and the error∆δcalc
ii

of calculated shift tensor
eigenvalues are related by the equationδiso =

1
3

∑
i δii, (i = 1, 2, 3). If ∆δcalc

ii
is assumed

to be identical for alli one obtains by error propagation

∆δiso =
1√
3
∆δii . (27)

Another reason for the reduced∆δcalc
iso

is that errors in the angular electron density
distribution around a nucleus lead to a systematic distortion of the shielding tensor with
one eigenvalue increased and another one reduced. We obtainRMSD(δexp

iso
, δcalc

iso
)=2.4,

5.4, and 3.8 ppm for EEIM, EIM and non-embedded methods, respectively, whenδcalc
iso

is calculated fromσcalc
iso

by the general conversion equation. Using the above mentioned
conversion equations, that are restricted to magnesium phosphates, the values reduce
to RMSD(δexp

iso
, δcalc

iso
)=1.6, 2.8, and 6.4 ppm, respectively.
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7 Conclusion

A new implementation of theEmbedded Ion Method(EIM) and the EIM/cluster ap-
proach was presented, useful for the calculation of NMR parameters of crystalline
compounds. Shortcomings and ambiguities of the traditional methods were discussed.
An improved scheme named EEIM was suggested, that avoids or reduces the problems
by setting up guidelines for the quantum cluster (QC) construction. Basic advantages
of the new scheme are the self-consistency of all embedding charges and the inde-
pendence of empirical parameters such as formal charges. Inthis sense the scheme is
self-contained. Uncharged QCs are recommended, which can beobtained by using the
same relative site frequencies in the QC as in the unit cell. Alternatives, likeatomic
grouping, are discussed for cases where exact charge neutrality is not possible. In any
case the nuclei of interest should be located near the centerof the QC with a buffer
zone of at least two to three coordination spheres to the QC boundary. The boundary
should be drawn between atoms with ionic interactions. Covalently networked crystals
can be treated, too, if the dangling bonds are far enough fromthe nuclei of interest. A
locally dense atomic orbital basis is employed to calculatelarger QCs at reduced com-
putational costs. A semiautomatized cluster setup is presented, which is more efficient
and less error-prone than a manual setup.

The accuracy of NMR parameters from EEIM calculations was sufficient to allow
the new assignment of various experimental31P NMR signals to crystallographic sites
in the magnesium phosphates Mg2P4O12, α-Mg3(PO4)2, α-Mg2P2O7 and MgP4O11.
The inner shell region of all QCs were treated at mPW1PW/6-311G(3df,3pd) level.
27 chemical shift tensor eigenvalues were calculated with aroot mean square devia-
tion (RMSD) of 8.8 ppm relative to experimental values when a general conversion
equation from31P absolute magnetic shieldings to chemical shifts was used.A con-
version equation derived specifically for the magnesium phosphates led to aRMSD of
4.3 ppm. Isotropic chemical shifts were calculated with anRMSD of 2.5 ppm (gen-
eral conversion equation) or 1.6 ppm (conversion equation for magnesium phosphates).
The quality of the results is similar to those reported for calcium phosphates obtained
by GIPAW calculations16.

In contrast to NMR calculations with periodic boundary conditions the EEIM
makes use of the locality of NMR properties. An obvious advantage is the applica-
bility to large unit cells. Also, defect structures can be examined efficiently. The
EEIM can be readily used to calculate electric field gradients (EFGs) and J-couplings.
It may be combined with trueab initio quantum chemical models that treat electron
correlation on a more sophisticated level than the currently available density function-
als. QM:QM embedding models for the QC region may help to makesuch calculations
affordable. Desirable improvements of the EEIM are a fully automated QC setup and
further refinement of the QC boundary treatment.
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D. Johrendt and H. Huppertz,Chem. Mater., 2007,19, 254–262.

[9] (a) J. Gauss and J. F. Stanton,Adv. Chem. Phys., 2002,123, 355–422; (b) A. A.
Auer, J. Gauss and J. F. Stanton,J. Chem. Phys., 2003,118, 10407–10417.

[10] C. J. Pickard and F. Mauri,Phys. Rev. B, 2001,63, 245101.

[11] M. Parrinello, J. Hutter, D. Marx, P. Focher, M. Tuckerman, W. Andreoni,
A. Curioni, E. Fois, U. Roetlisberger, P. Giannozzi, T. Deutsch, A. Alavi, D. Se-
bastiani, A. Laio, J. Van de Vondele, A. Seitsonen and S. B.et al., CPMD 3.11,
MPI für Festk̈orperforschung Stuttgart 1997-2001, IBM Corp. 1990-2006 tech-
nical report, 2006.

42



Weber, Schmedt auf der Günne: Calculation of NMR parameters in ionic solids

[12] (a) D. Sebastiani and M. Parinello,J. Phys. Chem., 2001,A 105, 1951–1958;
(b) D. Sebastiani, G. Goward, I. Schnell and M. Parinello,Comp. Phys. Comm.,
2002,147, 707–710.

[13] S. J. Clark, M. D. Segall, C. J. Pickard, P. J. Hasnip, M. J. Probert, K. Refson
and M. C. Payne,Z. Kristallogr., 2005,220, 567–570.

[14] D. Raczkowski, A. Canning, L. Wang, S. G. Louie, B. Pfrommer,
Y. Yoon, M. L. Cohen, D. R. amd F. Mauri, M. Cote, C. Pickard,
P. Haynes and J. Yates,PARATEC (PARAllel Total Energy Code).,
http://www.nersc.gov/projects/paratec/, 2007.

[15] F. Mauri, B. Pfrommer and S. Louie,Phys. Rev. Lett., 1996,77, 5300–5303.

[16] F. Pourpoint, A. Kolassiba, C. Gervais, T. Azaı̈s, L. Bonhomme-Coury, C. Bon-
homme and F. Mauri,Chem. Mater., 2007,19, 6367–6369.

[17] W. Kutzelnigg, U. Fleischer and M. Schindler,The IGLO-Method: Ab-initio
Calculation and Interpretation of NMR Chemical Shifts and Magnetic Sus-
ceptibilities, in NMR – Basic Principles and Progress, ed. P. Diehl, E. Fluck,
H. Günther, R. Kosfeld and J. Seelig, Springer, 1991, vol. 23, pp.165–262.

[18] G. Schreckenbach and T. Ziegler,Int. J. Quantum Chem., 1996,60, 753–766.

[19] D. Stueber, F. N. Gunneau and D. M. Grant,J. Chem. Phys., 2001,114, 9236–
9243.

[20] M. Strohmeier, D. Stueber and D. M. Grant,J. Phys. Chem., 2003,A107, 7629–
7642.

[21] D. Stueber and D. M. Grant,J. Am. Chem. Soc., 2002,124, 10539–10551.

[22] H. Lin and D. G. Truhlar,Theor. Chem. Acc., 2007,117, 185–199.

[23] A. M. Orendt,Magn. Reson. Chem., 2006,44, 385–389.

[24] Y. Zhang and E. Oldfield,J. Phys. Chem., 2004,B108, 19533–19540.

[25] M.-S. Liao and Q.-E. Zhang,J. Solid State Chem., 1999,146, 239–244.

[26] T. Bredow,Int. J. Quantum Chem., 1999,75, 127–132.
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