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Abstract

An improved implementation of single-crystal magic-angle-spinning (MAS) NMR is presented which

gives  access  to  chemical  shift  tensors  both  in  orientation  (relative to  the crystal  axis  system)  and

principal axis values. For mounting arbitrary crystals inside ordinary MAS rotors, a mounting tool is

described which allows to relate the crystal orientation determined by diffraction techniques to the rotor

coordinate system. The crystal  is finally mounted into a MAS rotor equipped with a special insert

which allows a defined reorientation of the single-crystal by 90°.

The approach is based on the idea that the dispersive spectra, which are obtained when applying read-

pulses at specific rotor-phases, not only yield the size of the eigenvalues but also encode the orientation

of the different chemical shift  (rank-2) tensors. For this  purpose two 2D-data sets with orthogonal

crystal  orientation  are  fitted  simultaneously.  The  presented  analysis  for  chemical  shift  tensors  is

supported by an analytical formula which allows fast calculation of phase and amplitude of individual

spinning side-bands and by a protocol which solves the problem of finding the correct reference phase

of  the spectrum.  Different  rotor-synchronized  pulse-sequences  are  introduced for  the  same reason.

Experiments are performed on  L-alanine and O-phosphorylethanolamine and the observed errors are

analyzed in detail. The experimental data are opposed to DFT-computed chemical shift tensors which

have been obtained by the extended embedded ion method.
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Introduction

The chemical shift δ is a tensor of rank 2. Despite of the fact that the full tensorial property, i.e. the

tensor eigenvalues (=principal axes values) and the tensor eigenvectors (=orientation of the principal

axes), can give valuable information about the local molecular structure, experimental determinations

of the full tensor information are comparably scarce. Most solid-state NMR investigations are restricted

to  the  principal  axes  values.1 The  reasons  why  eigenvectors  have  been  reported  seldomly  are  (i)

necessary  commercial  goniometer  probes  are  not  widely  available,  (ii)  homonuclear  dipole-dipole

couplings may limit resolution, and (iii) low sensitivity.

Examples of such full investigations are given for various nuclei and with different NMR experiments,

for example 13C  (see refs 2–6), 14 N  (ref. 7), 19 F  (ref. 8), 31 P  (refs. 9–12), 59Co (ref. 13), and 207 Pb

(ref.  14) some of which have gained tremendous importance because the results serve as reference

values in NMR methodology development15–19 and in applications for determining bond and dihedral

angles.12,20–23 These  experiments  are  commonly performed with  the  help  of  static  measurements  in

goniometer NMR probes.3,19 The possibility to obtain single crystal MAS spectra from powders24 by

selective excitation of a powder subset is a very interesting option but does not yield absolute tensor

orientations.

An alternative was introduced by Kunath-Fandrei et al.25 who suggested using magic-angle-

spinning (MAS) NMR where the rotor phase at the beginning of the read-pulse is systematically varied.

At moderate spinning frequencies the observed spectra contain a sideband pattern where the dispersive

line shapes  of  the  individual  spinning sidebands encode the chemical  shift  tensor  orientation.  The

authors  showed  that  the  sideband  pattern  contains  enough  information  to  determine  shift  tensor

eigenvectors from two different two-dimensional (2D) data sets. In their  study they made use of a

single-crystal of high symmetry and a simple morphology which eased the data analysis. Klymachyov

and Dalal26 have used single crystal MAS NMR for the characterization of phase transitions. Kentgens

et al. 27,28 showed that single-crystal MAS NMR has sufficient sensitivity if combined with microcoils

to  get  tensor  information  even  in  case  of  minute  crystals.  Similar  experiments  have  also  been

performed for oriented  polymers30. Earlier it had already been shown MAS spectra of single-crystals

become absorptive, when the rotor-phase at the read-pulse is averaged over a full revolution of the
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rotor ("carousel" averaging)31, which will become useful to determine the reference phase for the data

analysis.

In this work we extend the work by Kunath-Fandrei et al. in theory and hardware to allow a

routine application of this technique. To this end several issues had to be addressed: a practical way for

mounting arbitrary single-crystals in a defined way (section hardware), efficient data analysis by an

analytical  formula  for  the  line  shape  function  (section  theory)  as  well  as  an  analytical  protocol

including  special  pulse  sequences  which  help  to  stabilize  the  baseline  and define  reference  phase

(section pulse sequences and protocol).

During the rather long time between essentially finishing the current work (April 2011) and writing

down the current manuscript, several papers appeared, which deal with the derivation of the dispersive

side band pattern for a single crystal making use of irreducible spherical tensor representations for the

chemical  shift  (anisotropy)  and Wigner  matrices.32,33,34 Earlier  the  same strategy  was  used  for  the

derivation of the tensor of quadrupolar interaction27, and in fact was already introduced for arbitrary

interactions in a review by Antzutkin35 as well as the famous paper on rotating solids by Maricq and

Waugh36.  Therefor, we omit this derivation, but instead provide a description in Cartesian space in

complete analogy to Herzfeld and Berger.37 
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Theory

Coordinate systems and transformations

For the determination of tensor orientations from single-crystal MAS experiments it is convenient to

introduce seven right-handed, Cartesian coordinate systems denoted as {P, C, G, D, W, R, L} (=frames)

as shown in Figure 1. Well established in NMR under MAS conditions are the principal axis frame of a

specific interaction (P), the crystal (alternatively molecular) frame (C), the MAS rotor frame (R) and

the laboratory frame (L) in which the observation of the free induction decay (FID) is made. For single-

crystal MAS NMR we need three extra frames, because the orientation of the crystal is determined with

diffraction experiments prior to the NMR experiments on a diffractometer (frame D) while the crystal

orientation is approximately conserved by mounting it onto a goniometer adapter (G) before being

glued into a small cube (German: Würfel,  W) whose orientation relative to  R must be determined in

order to relate the crystal frame C to the rotor frame R. The precise definitions of the individual frames

are given as follows:
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6

Figure 1: Various reference frames of the experiment and sets of rotation matrices for transformations

between  the (P) principal coordinate system of the chemical shift tensor, (C) crystal coordinate system,

(G) goniometer coordinate system, (D) diffractogram coordinate system, (W) cube coordinate system,

(R) MAS rotor coordinate system, and (L) laboratory coordinate system. All coordination systems are

right-handed.
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1. P is the principal axes frame. It consists of the three orthonormal eigenvectors {e1
P ,e2

P ,e3
P
}  of

the chemical shift tensor.

2.  C is  the crystal  axes  frame,  whose basis  vectors  e i
C  are  defined via  an orthogonalization

procedure from the (real-space) crystal axes a, b, and c: e1
C
=a /∣a∣ , e2

C
=b−b⋅e1

C
/∣b−b⋅e1

C
∣ ,

e3
C
=e1

C
×e2

C . In case of a cubic or orthorhombic crystal the expressions simplify to e1
C
=a /∣a∣ ,

e2
C
=b /∣b∣ ,  e3

C
=c /∣c∣ .  In  case of  a  monoclinic  crystal  the axes  are  e1

C
=a /∣a∣ ,  e2

C
=b /∣b∣ ,

e3
C
=e1

C
×e2

C
=c*/∣c*∣ , where c*  is the third basis vector of the reciprocal cell.

3. G is  the  goniometer  adapter  frame.  The  origin  of  its  basis  vectors  e i
G  is  located  at  the

intersection point of the rotation axis and the fixation plane. e1
G  points away from the notch in

the base ring of the adaptor,  e2
G  is along the rotation axis (and perpendicular to the fixation

plane) of the adaptor pointing towards its tip, and e3
G
=e1

G
×e2

G . 

4. W is the frame of the cube (german: ”Würfel”), that hosts the single-crystal and is inserted to

the  MAS  rotor.  Three  cube  faces  were  marked  with  different  hatching  (vertical-red-lines,

horizontal-green-lines, cross-blue-lines) and assigned as the normal planes of  e i
W ,  i=1,2,3 ,

respectively. The face marked with cross-lines contains the borehole, i.e. e3
W  is parallel with the

long axis of the cylindrical borehole.  e1
W  and  e2

W  are chosen along the intersecting edges of

horizontal-green-cross  and  vertical-red-cross  line  faces,  respectively.  Parallel placement  of

cube W in the rotor is defined as e1
W  being parallel to the rotor axis e1

R  (defined below) with

e1
W
⋅e1
R
=1 ,  e2

W
⋅e2

R
=1 ,  and  e3

W
⋅e3

R
=1 ;  perpendicular placement  means  that  e1

W
⋅e3

R
=1 ,

e2
W
⋅e2

R
=1 , and e3

W
⋅e1

R
=−1  via rotating the cube by 90° around e2

W .

5. D is the diffractometer frame. It is close (but not identical) to G with its basis vectors defined

as:  e1
D
=e2

D
×e3

D  is perpendicular to the rotation axis of the goniometer and the X-ray beam

(pointing away from the CCD camera in the parking position on our diffractometer),  e2
D  is

along the rotation axis (and identical to e2
G ) and e3

D  is pointing towards X-ray beam source. In

our case, we found that  D differs from  G via clockwise rotation by  0.56 °  around  e2
G . The
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diffractometer frame may vary for different diffractometers.

6. R is the (MAS) rotor axis system, and defined by: e3
R  is the rotor spinning axis, e1

R  is along the

line from the center towards a point on the rotor wall at which the anticlockwise rotation is

optically detected using white-to-black contrast, and e2
R
=e3

R
×e1

R . 

7. L is the Lab coordinate system. It is defined by:  e3
L  is along the external magnetic field B0 ,

e1
L  is perpendicular to e3

L  and lies in the plane spanned by the symmetry axis of the solenoid

coil and B0 , and e2
L
=e3

L
×e1

L .

The relative orientations between any two frames can be expressed by direction cosines or alternatively

by Euler angles.38 A general rotation matrix  R to transform a vector or a tensor from one coordinate

system (A) to another (B) can be decomposed as the product of the three individual rotations

R (ΩAB)=R(α AB , βAB , γ AB)=R z(α)R y '(β)R z ' ' (γ )  , (1)

where   AB  is  the  symbol  denoting  a  set  of  Euler  angles  AB , AB , AB  and  R z  ,  R y '   ,

R z ' '    are rotation matrices in Cartesian space which describe a rotation around z -axis by an angle

 , rotation around the newly formed  y ' -axis by an angle    and a last rotation around the newly

formed z ' ' -axis through  , respectively.38. Here, the {x , y , z}  indicates the starting reference frame

axes while primes on the axes denote the intermediate rotated frames. The  R  AB  rotation matrix

with the set of Euler angles AB , AB , AB  is defined as,

R (ΩAB)=(
cos γAB sin γ AB 0
−sin γ AB cos γ AB 0

0 0 1
)⋅(

cosβAB 0 −sinβAB

0 1 0
sinβAB 0 cosβAB

)⋅(
cosαAB sin αAB 0
−sinα AB cosαAB 0

0 0 1
)  , (2)

We followed the Rose convention38 and passive rotations as described by Schmidt-Rohr and Spiess39

for the definitions of Euler angles and rotation matrices. 
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Analytic treatment of single-crystal MAS NMR signals

In Fourier-transform NMR, the spectrum S (ω)  of a single nucleus n  can be described by40

S (ω)=aL(ω ;ωn
L ,λn)exp {i(θ+θ0)}  , (3)

where S ∈ℂ  is a complex valued function depending on the frequency  , the signal amplitude a

, the Larmor frequency of the nucleus ωn
L , the peak-width parameter λ n , the signal phase θ , and the

phase correction angle of zeroth order θ0  used in post processing of the NMR spectrum. The complex

Lorentzian, L, is defined as 

L(ω ;ωn
L ,λn )=

λn

λn
2
+(ω−ωn

L
)
2

⏟
A

+i
−(ω−ωn

L
)

λn
2
+(ω−ωn

L
)

2

⏟
D

 , (4)

A is called the absorption Lorentzian, D the dispersion Lorentzian. Both θ  and θ0  do not depend on

 .  θ0  is adjusted during the post processing ("phasing") of the NMR spectrum, so that  θ+θ0=0 ,

which causes the real part of a carousel averaged 1-crystal NMR spectrum to have a purely absorptive

line shape 

Re[S (ω)]=aA(ω ;ωn
L ,λn) , (5)

At  present,  solid-state  NMR spectra  of  crystalline  compounds  are  mostly  recorded  for  powdered

samples, which forms a perfect carousel average and hence can be phased to purely absorptive  line

shapes. If the nucleus under investigation is bound in a low-symmetric environment, the chemical shift

anisotropy (CSA) leads to a signal broadening, which reflects the dependency of the resonance signal

on the different orientations of the crystallites (or more accurately: the chemical shift  tensor) with

respect to the magnetic field. Under MAS conditions at moderate spinning frequencies (νrot<δanisoνref )

the CSA is partly averaged out,  so that the resonance signal splits into a central  band and various

spinning sidebands (SSBs), all of which have the same signal phase θ . Thus, the spectrum remains

purely absorptive. In the following we will drop the subscript n which refers to nuclei from different

chemical environments.

Contrarily, in rotor-synchronized MAS NMR spectra of single crystalline (non-powdered) samples the

phases  of  the  SSBs  generally  differ  from one  another  so  that  no  phasing  to  a  purely  absorptive

spectrum is possible. Instead, the line shape of each SSB is a mixture of absorptive and dispersive parts
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depending on the tensor orientation in the magnetic field.36,41 By rotor-synchronization we understand

in this context, that the radio frequency (rf) excitation pulse is fixed with respect the rotor position. If

the rf excitation is  evenly distributed over the rotor phase, e.g. by numerous excitations at random

times, the  single-crystal  MAS  spectra  show  purely  absorptive  line  shapes  similar  to  powdered

sample.41,42 The complex NMR signal S t  , which is obtained by43, 

S t ~tr {t  I +
} , (6)

where  I +
= I xi I y  is a shift operator. For the time-dependent Hamiltonian, using Baker-Hausdorff

relation for time evolution series39, the density matrix is proportional to,

ρ(t)=exp∫0

t
iωLdt=exp i{−γnuc B0∫0

t
δ zz

L dt} , (7)

In this  work,  we follow the classical  approach of  Herzfeld  et  al.,37 but  extend it  to  the

calculation  of  the intensities  and the phases  of  dispersive  spinning sidebands.  Figure 2 shows the

chosen  laboratory  coordinate  system.  Under  MAS  conditions  the  sample  is  spun  at  an  angular

frequency r  around the rotor axis e3
R  which has an angle  RL  relative to the applied magnetic field

B0 . The field lines of the latter lie along e3
L . Hence, in the R-frame the sample sees the direction of

the static magnetic field oscillating according to the following equation (see also Figure 2)

e3
L 

R
=sin RL cosRL ,sin RL sinRL ,cos RL , (8)

where

RL=0
RL
r t , (9)
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is the rotation angle of the rotor measured at time t  relative to an offset α0
RL .

The precession frequency of a given spin is


L
=−nuc B0 B0⋅

R
⋅B0

T
 , (10)

where  δ
R  is the chemical shift tensor for that spin in a molecule/crystal expressed in the rotor axis

frame. R  may be obtained from C , which is the shift tensor expressed in the orthogonalized crystal

coordinate system, according to


R
=R CR R PC⋅

P
⋅R−1

PC R
−1
CR , (11)

where  P  is the chemical shift tensor in the principal axis frame  P  in which the chemical shift

tensor is diagonal.


P
=

 xx
P

0 0

0  yy
P 0

0 0  zz
P  . (12)

11

Figure 2: The coordinate system with the rotor axis frame as reference; the (0,0,1) vector is the axis of

rotation of the sample; B0  is a unit vector in the direction of the applied magnetic field.37
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In the secular approximation only the  z-component of  L  is of interest in the laboratory frame (L),

whose relation to δiso  and the components δii
R  is obtained by combination of equation  (10) and (11):

 zz
L
=[ iso

1
2

3cos2
RL−1  zz

R
−iso]sin2

RL [ 12  xx
R
− yy

R cos 2RL xy
R sin 2RL]

2sin RL cos RL [ xz
R cosRL yz

R sinRL]
(13)

Evaluation of  L , combining equations  (7) and (13) and, shows that it contains a time independent

term, a term which oscillates through  αRL  at 2ωr , and a term which oscillates at r ,

ωL
=(−γnuc B0)(δiso+

1
2

(3cos2 βRL−1) (δ zz
R
−δiso)+

sin2β RL[ 1
2

(δxx
R
−δ yy

R )cos (2α RL)+δxy
R sin(2α RL)]+

2sin βRL cos βRL (δ xz
R cosα RL+δ yz

R sin α RL) )

. (14)

For the magic angle  βRL=βmagic=arccos(1/√3) , the term  (3cos2βRL−1)  in equation (14) becomes

zero, and hence


L

= −nuc B0iso
2
3 

 xx
R

2
cos2RL−

 yy
R

2
cos 2RL  xy

R sin 2RL
22

3
 xz

R cosRL yz
R sin RL 

(15)

The free induction decay for the entire sample is given by equation (7) 
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ρ(t)=exp {i θ(α PL ,βPL , γPL ,t )} = exp{ i (−γnuc B0 )((δiso t )+ (
1

2ωr
)(

2
3 )[

δxx
R

2
sin 2αRL−

δxx
R

2
sin 2α0

RL]
−(

1
2ωr

)(
2
3 ) [

δ yy
R

2
sin 2αRL+

δ yy
R

2
sin 2α0

RL ]+

(
1

2ωr
)(

2
3 ) [δxy

R sin (2αRL−
π
2 )−δxy

R sin (2α0
RL
−π

2 )]
+( 1

ωr )(
2√2

3 ) [δxz
R sinαRL−δxz

R sin α0
RL ]+

( 1
ωr )(

2√2
3 )[δyz

R sin (αRL−
π
2 )−δyz

R sin (α0
RL
−π

2 ) ]) }

(16)

The NMR signal generated by any pulse sequence can be expressed as,40 

S (t)=∑N
aN exp {i(ωN t+θN)}exp {−t /T 2} , (17)

where,  a N  is the N th  sideband intensity,  N  is the  N th  sideband resonance frequency,  θN  is the

N th  sideband phase of the signal component, and 1/T2  is a damping rate constant. Hereafter 1/T 2  is

neglected  for  simplicity  of  an  analytical  function.  Equation  (16)  can  be  expressed  in  the  form of

equation (17) using the following property of the Bessel functions of the first kind44–46 

exp {i zsin }= ∑
n=−∞

∞

J n z exp {i n} . (18)

It follows that

exp {i [θ0+C 1sin θ1+C2 sin θ2+ .....+Cnsin θn ] }=

∑
n1=−∞

∞

∑
n2=−∞

∞

..... ∑
nn=−∞

∞

J n1
(C1) J n 2

(C2) ... J nn
(Cn) × exp {i [θ0+n1 θ1+n2 θ2+...+nn θn ] }

. (19)

Thus, equation (16) becomes,
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ρ(t)=exp {iθ(αPL ,βPL , γPL ,t )} =∑
j=−∞

∞

J j(κ xx
R
) ∑

j'=−∞

∞

J j '(κxx
R
) ∑

k=−∞

∞

J k (κyy
R
) ∑

k '=−∞

∞

J k ' (κyy
R
)

∑
l=−∞

∞

J l(κxy
R
) ∑

l '=−∞

∞

J l ' (κxy
R
) ∑

m=−∞

∞

J m(κxz
R
)

∑
m'=−∞

∞

Jm ' (κxz
R
) ∑

n=−∞

∞

J n(κyz
R
) ∑

n '=−∞

∞

J n ' (κyz
R
) ×

exp { i( −γnuc B0δ iso t+ωr t (2 j−2k+2 l+m+n )+

α0
RL

[2 ( j− j ' )−2(k−k ')+2(l−l ' )+(m−m' )+(n−n ')]

−π
2

[(l−l ' )+(n−n ')]) }

, (20)

where,

κxx
R
=−γnuc B0(

1
2ωr

)(
δxx

R

3 ) ∧ κyy
R
=−γnuc B0(

1
2ωr

)(
δyy

R

3 ) ,

 xy
R
=−nuc B0 1

2r
 2

3  xy
R

,

 xz
R
=−nuc B0 1

r 
22

3  xz
R

∧  yz
R
=−nuc B0 1

r 
22

3  yz
R

.

(21)

The free induction decay in equation (20) consists of a central resonance at the isotropic chemical shift

and a series of non-absorptive spinning sidebands spaced r  apart.

The intensities and the phases of the sidebands

As per  Herzfeld  et  al.,37 it  is  convenient  to  call  the  sideband located  at  N r  from the isotropic

resonance the N th  sideband. If the position of the isotropic resonance is not known, the N th  sideband

may be identified as the line which moves N  r  when the spinning speed is changed by r .

Using N=2 j−2k+2 l+m+n  as substitution in equation (20), the relative intensity and the phase of

the N th  sideband is
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SN = ∑
j=−∞

∞

J j(κxx
R
) ∑

j '=−∞

∞

J j ' (κxx
R
) ∑

k=−∞

∞

J k(κyy
R
) ∑

k '=−∞

∞

J k ' (κyy
R
)∑

l=−∞

∞

J l(κxy
R
)

∑
l'=−∞

∞

J l ' (κxy
R
) ∑

m'=−∞

∞

J m ' (κxz
R
) ∑

n=−∞

∞

J n(κyz
R
) ∑

n '=−∞

∞

J n ' (κyz
R
) J N−2j+2k−2l−n(κxz

R
)

× exp { i( α0
RL

[2 ( j− j ' )−2(k−k ')+2(l−l ' )

+(N−2 j+2 k−2 l−n−m' )+(n−n ' )]

−π
2

[(l−l ' )+(n−n ' )] ) }

(22)

The  infinite  sums  and  Bessel's  function  in  equation  (22)  may  be  eliminated  by  using  following

property44–46, 

J n z =
1

2
∫
0

2

exp {i z sin−i n }d  . (23)

and equation (18). 

The resultant equation can be written as

SN = exp{ i (−κxx
R sin(2α0

RL
)+κyy

R sin (2α0
RL
)

+κxy
R cos(2α0

RL
)−κxz

R sin(α0
RL
)+κyz

R cos(α0
RL
)) }

×
1

2π∫0

2π

exp{ i(α0
RL
−θ)N+κxx

R
sin(2θ)−κyy

R
sin(2θ)−κxy

R
cos (2θ)

+κxz
R sin(θ)−κ yz

R cos(θ) } dθ

(24)

Equation (24) is an analytical function to calculate the intensities and the phases of the dispersive

spinning sidebands, encoded in the complex valued SN. 

Symmetry related shielding tensors in single-crystals

It has been recognized early that two crystallographically equivalent nuclei (CEN), i.e. a pair of nuclei

which belongs to the same crystallographic site (alias two representatives of a crystallographic orbit in

IUCR terminology47), do  not  necessarily  have  the  same  shielding  tensor  contribution  for  a  given

orientation  in  a  single  crystal  NMR  experiment.48 Although  these  nuclei  and  their  electronic

environments  are  related  to  one  another  by  some  symmetry  operation,  the  orientation  of  their
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corresponding nuclear magnetic shielding tensors relative to the magnetic field vectors can be different.

This becomes manifest in single crystal NMR rotation plots where some of the CEN show different

chemical shifts depending on the crystal orientation, while others don´t. For example, four different

NMR signals are visible from the eight crystallographically equivalent  31P nuclei the unit cell of 2-

aminoethyl-phosphonic acid.9 Single-crystal MAS-NMR spectra which are in the focus of the present

work are affected by this inequivalence as well. In order to decide whether two CEN have the same

shielding  tensor  contribution  to  the  Hamiltonian  or  not,  it  is  helpful  to  investigate  the  symmetry

relationships between them, which are given for all possible space groups in the International Tables

Of Crystallography Volume A.47 Two CEN will in general have the same contribution if their tensors

have the same orientation, we thus call them “orientationally equivalent” to distinguish this case from

the terms “chemical equivalence” and “magnetic equivalence” which have been defined in different

ways depending on context.40,49

The  question  whether  two  representatives  are  orientationally  equivalent  can  be  answered  by

investigation of the symmetry elements of the space group: A pair of CEN related by a translation or an

inversion will be orientationally equivalent, since the (symmetric part of the) chemical shift tensor is

invariant to these symmetry operations. However, other symmetry operations like reflections, rotations

and  rotoinversions  by  angles  different  from 360°  lead  to  orientational  inequivalence.  To  find  out

orientational (in)equivalences quickly, and to derive the orientations of shielding tensors of nuclei from

the same crystallographic orbit, we follow the general approach described in chapter 11.1 of ref.47 and

set up a transformation matrix Wk  and a translation vector wk  . The vector wk   can be omitted for

the reason mentioned above. Although these matrices define transformations in fractional coordinate

space,  their  principal  character  stays  the  same  when  transformed  to  orthogonalized  Cartesian

coordinates. The latter transformation is needed to calculate the reorientation of the shielding tensor of

a magnetically inequivalent site.

In SIMPSON50,51 simulations of the single-crystal NMR spectra care must be taken for orientationally

inequivalent nuclei and a simulation for each of them has to be done. In order to save computational

resources, the individual orientations can be simulated as separate spin systems. A different strategy

was  used  by  Hansen  et  al. 52.  The  observed  spectrum  is  a  superposition  of  the  orientationally

inequivalent nuclei, with the relative abundance of the respective orientations as weights. 
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Phase correction for single-crystal MAS NMR / Phase reference in single-crystal MAS NMR

In general, single-crystal NMR spectra under MAS are dispersive in nature. The  line shape of each

spinning sideband of single-crystal spectra has a particular phase which is given by equation (24) 36,41.

In single-crystal MAS NMR, the signal phase is important as it provides information about chemical

shift tensor orientation. In order to obtain a stable phase reference we use the fact that a single-crystal

MAS NMR spectrum averaged over an infinite number of evenly spaced starting angles αPR  generates

an absorptive spectrum, which has been termed carousel averaging.31

An interesting question is how many uniformly spaced starting angles αPR  will be necessary to get an

sufficiently absorptive spectrum for phase referencing in single-crystal MAS NMR. Figure 3 shows the

signal  averaging  for  various  numbers  N c  of  seats  in  carousel.  It  is  observed  that  the  absorptive

character  of the spectrum rapidly improves for increasing an increasing number of seats  N c .  For

example, the absorptive character for a spectrum with N c=20  (Figure 3), shows a signal phases below

0.05° for the four sidebands of highest intensity. The number  N c  necessary to achieve a close-to-

absorptive spectrum may however depend on the chemical shift tensor.
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Figure 3: Signal averaging of single-crystal magic angle spinning spectra for (I) N c=2 , (II) N c=5 ,

(III) N c=10 , and (IV) N c=20  being the number of  “seats”, i.e. starting angles αRL  in the carousel

average;  a  sufficiently  absorptive  spectrum  is  observed  for  N c=20  (IV);  numerical  simulation

parameters  are:  ωr /2π=1.5kHz ,  chemical  shift  anisotropy  parameter  δaniso=−68.3ppm ,  and

asymmetry  parameter  η=0.76 ;  single-crystal  orientation  specified  by  Euler  angles  αPR=350 ° ,

βPR=95° , and γPR=100 ° .
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Experimental Details

Hardware

Single-crystal MAS NMR in principle can be done without any specialized hardware. However, if the

aim  of  the  investigation  is  the  determination  of  the  chemical  shift  tensor  orientation  in  the

(orthogonalized)  crystal  axes  system,  the  crystal  has  to  be  either  of  a  simple  morphology25 or  its

orientation,  i.e.,  the orientation of  the crystallographic unit  cell  in  the laboratory frame,  has to  be

determined  independently.  A  convenient  way  to  determine  it  is  offered  by  standard  diffraction

techniques.  In  the  following we describe  two home-made tools  which  represent  a  minor  financial

investment comparable to a few ceramic rotors, which allowed us to use a standard MAS probe for

single-crystal MAS NMR experiments. The basic idea is to transfer the information about the crystal

orientation from the goniometer of the diffractometer into a MAS rotor insert, by gluing the crystal into

a small cube which can then be put into a cubic void of an insert which fits the cylindric void of a MAS

rotor as described in Figure 4.

Single-crystal mounting equipment 

In Figure 4-I a tool is shown which can be used for mounting a single-crystal with a dimension of about

1 mm3 in  a  magic  angle  spinning  (MAS) rotor.  This  equipment  comprises  the  following  parts.  A

standard goniometer is used to measure a single-crystal orientation on an X-ray diffractometer. The

goniometer adapter ( c ) with known orientation of the single-crystal can be screwed on the goniometer

holder ( b ) that is fixed permanently to plate ( a ). The cube ( e ) with 2 mm3 dimension is tightened to

a movable cube holder ( f ). The cube is made from polychlorotrifluoroethylene (PCTFE or Kel-F).

Single-crystal is transferred with a linear bearing into the opening of a cube with a cylindrical void with

known orientation. The single-crystal can be glued into the cube using suitable glue for example 2-

components epoxy resine.
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Rotor insert 

To determine the orientation of the single-crystal in the MAS rotor, it is necessary to achieve the light

detection mark which has a fixed position on the rotor. This can be achieved using a specially designed

rotor with three parts, a rotor insert with a bottom cap as a single piece ( j ) which can be inserted/fixed

in a both open ended 4 mm ZrO2 MAS rotor ( k ) with a drive cap ( l ) on the top as shown in Figure 4-

II. The rotor insert is made of black polyoxymethylene (POM) material. A small middle strip of the

bottom cap of the insert  is  replaced by white  polyvinyl  chloride (PVC) to achieve the fixed light

20

Figure  4: A  complete  hardware  assembly  for  a  rotorsynchronized  magic  angle  spinning  NMR

experiment of a single-crystal; a base plate a ; a goniometer holder b ; a goniometer adapter c  with

the single-crystal i  a rod d ; a cube e ; a movable cube holder f ; tightening screws g ; an adjustment

wheel  h ;  a  black polyoxymethylene rotor  insert  with a cavity for the cube  e  and a white  mark

inserted in bottom cap as a single piece j ; and a 4 mm both open end MAS rotor k  with a drive cap

l .
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detection mark on the MAS rotor for spin detection. At the center of the insert, a cubic hole is pressed

with the exact dimensions of the sample cube, so that the single-crystal is located in the homogeneous

part of the rf coil. Finally, the complete rotor insert including the sample cube as a single unit is placed

in a both open ended 4 mm ZrO2 MAS rotor ( k ) with a drive cap ( l ) (Figure 4-II).

The  cube  assembly  gives  freedom  to  choose  two  different  orientations  for  a

rotorsynchronized  MAS  NMR  of  a  single-crystal,  which  is  sufficient  to  allow  a  high-accuracy

determination of the chemical shift tensor orientations. 

Phase corrected rotorsynchronized pulse sequence

In single-crystal MAS NMR the signal phase is of utmost importance, because it is the observable from

which the chemical shift tensor orientation is determined. A simple one-pulse excitation scheme which

previously25 has been used to measure single-crystal MAS NMR spectra has the disadvantage that the

dead time delay needs to be compensated for by zeroth and first order phase correction of the spectra,

which in turn introduces baseline rolling and a phase error which increases the further away a sideband

is from the pivot-point.53 A properly setup spin-echo experiment, where the delay after the   -pulse

has been optimized as to minimize the need for a first-order phase correction has the advantage that the

phase and amplitude of the individual spinning sidebands can be measured with higher accuracy. We

therefor introduce a rotor-sychronized spin-echo experiment and doubly rotor-synchronized ramped

cross-polarization followed by a spin-echo experiment which reduce phase-distortions to a tolerable

level and are described in the following.

Figure 5-I shows a phase compensated 2D rotor-synchronized spin echo experiment. For

rare  spins  (e.g.  13C,  15N) to  achieve  sensitivity,  a  doubly  rotor-synchronized  ramped  based  cross-

polarization (CP-RAMP)54 followed by a spin-echo pulse sequence55,56 is shown in Figure 5-II. In this

pulse sequence the first trigger signal ( t trig ), activated when the black-to-white contrast of the rotor

meets  the  detector  of  the  MAS  unit,  initiates  the  ramped  based  cross-polarization  (CP-RAMP)

sequence. After this the 13C/X magnetization in the xy-plane is restored to the z-direction by a  /2

pulse on X-channel which is 90° out of phase with first  /2  pulse on H-channel. When the rotor

phase reaches its starting value for the next time, a second trigger signal is executed. It is then waited

for a programmable t1 period before executing the rotorsynchronized spin-echo pulse sequence.
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Figure 5: Rotorsynchronized two-dimensional (2D) experiments: (I) A modified 2D spin-echo pulse

sequence; (II) A 2D CP-RAMP followed by a modified rotorsynchronized spin-echo pulse sequence

used for single-crystal measurements; t trig  is the trigger signal; r  designates a rotor period;    is a

small delay which has to be determined once from powder measurement so that (small) first-order

phase corrections become unnecessary as explained in the reference.56
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Experimental protocol

The following protocol contains the necessary steps to perform the chemical shift tensors analysis using

the rotorsynchronized cross-polarization spin-echo MAS NMR of a single-crystal. 

1. Determine the spectrometer constant/timing 0
RL
 , which is spectrometer specific and depends

on the time delay between the trigger signal t trig  and rf pulse. It has to be done only once. To

determine 0
RL
 : Do following 2-8 steps for a reference sample where the chemical shift tensor

orientations are known from different sources for example from point group symmetry, static

single-crystal experiments or from quantum chemical calculations.

2. Fix a single-crystal on a goniometer adapter and determine the orientation matrix by an X-ray

measurement    ⇒ RCG  .

3. Fix the goniometer adapter on the mounting equipment (Figure 4, b ) and transfer the single-

crystal into the cube (Figure 4, e ) without changing its orientation, RGW  . Glue the single-

crystal into the cube.

4. Transfer the sample cube (Figure 4,  e ) by placing the cube coordinate system parallel to the

rotor coordinate system into the rotor insert (Figure 4,  j ) and place the insert into the MAS

rotor (Figure 4, k ), RWR , so-called parallel orientation.

5. Obtain the phase corrected rotorsynchronized single-crystal  MAS NMR spectra  using pulse

sequences shown in Figure 5 which does not require unwanted subsequent baseline corrections

of the spectrum.

6. Similarly,  obtain  the  rotor-synchronized  single-crystal  MAS  NMR  spectra  for  the  second

orientation  by  rotating  the  cube  around  e2
W

 by  90°  in  the  MAS  rotor  insert  to  so-called

perpendicular orientation. 

7. Obtain the both orientations of the single-crystal in the MAS rotor system with the help of

different frame transformations as shown in Figure 1, R(ΩCR) .

8. Determine the chemical shift tensor orientations from a grid search followed by a least square

fitting procedure of simulated data with experimental data using the (modified32) SIMPSON
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program.50,51

Experimental Section

Sample preparation 

Single-crystals of 13C1-labeled L-alanine (CAS No. 21764-56-7) and O-phosphorylethanolamine (CAS

No. 1071-23-4) are grown from saturated aqueous solutions.  The commercial  L-alanine (13C1,  99%

enriched)  and  O-phosphorylethanolamine  samples  are  purchased  from  the  Cambridge  Isotope

Laboratories  Inc.  and Sigma,  respectively.  The  L-alanine  crystals  are  orthorhombic  and  belong to

space-group P212121 (No. 19) with four molecules per unit cell. The unit cell parameters a=6.063 Å ,

b=12.261 Å ,  c=5.785 Å  and  the  fractional  coordinates  have  been  determined  by  neutron

diffraction.57,58 The O-phosphorylethanolamine crystals are monoclinic and belong to the spacegroup

P 21/ c  with  four  molecules  per  unit  cell.  The  unit  cell  parameters  a=9.015 Å ,  b=7.745 Å ,

c=8.788Å ,  and  =102.51 °  and  fractional  coordinates  have  been  determined  by  neutron

diffraction.59

Solid state NMR spectroscopy 

All experiments are performed on a Bruker Avance-III NMR spectrometer operating at a resonance

frequency of 500.13 MHz for 1H, 125.75 MHz for 13C, and 202.45 MHz for 31P. A commercial 4 mm

triple-resonance MAS probe is used for the slow rotation of the single-crystals. The size of the crystal

is  chosen  such  that  it  fits  into  the  cube  (for  L-alanine  1.2 mm×0.8 mm×0.9 mm  and  for  O-

phosphorylethanolamine  0.9 mm×1.0 mm×0.8 mm ).  The  L-alanine and O-phosphorylethanolamine

crystals are spun at 1.5 kHz and 4 kHz, respectively. Principal axes values of the  13C chemical shift

tensor for the L-alanine were determined from a least-square fitting procedure of a simulated spectrum

to an experimental slow MAS NMR spectrum as described in ref. 32. For the L-alanine experiment, 256

scans with repetition time delay of 3 s are accumulated per row. In total 20 different measurements are

performed at changing rotor position (rotor phase  γCR  obtained by varying  t1) at the time of pulse

irradiation  by  18°  between  each  experiment.  Contact  time  of  3 ms  is  used  for  all  experiments.

Saturation pulse combs are applied prior to relaxation delays in all experiments to prepare the identical

initial spin system for each transient. During all pseudo-2D experiments, we used t1 increments and 2D
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data acquisition.

Computational details

Quantum  chemical  calculations  of  absolute  magnetic  shielding  tensors    were  performed.  The

experimentally determined structure of L-alanine from neutron diffraction at room temperature57 served

as input structure. The calculations were performed with the Extended Embedded Ion Method (EEIM),

an embedded cluster approach in which the quantum cluster (QC, i.e. the quantum chemically treated

region)  is  placed  in  an  exact,  self-consistent  electrostatic  potential,  which  is  obtained  from  first

principles, i.e. without empirical parameters. For details on the EEIM we refer to ref. 60.

Two different QCs were created for EEIM calculations. The first QC included only a single

alanine molecule ([L-ala]1, see Figure 6 a), the second QC consisted of 15 alanine molecules ([L-ala]15,

see Figure 6 b). The pcS-2 basis  set61 as stored in the Gaussian basis set  library62,63 was used for [L-

ala]1, whereas a locally dense basis was used for QC [L-ala]15, where atomic basis functions (AOs) are

assigned on the basis of a spherical shell expansion around the central alanine molecule (see  60 for

details). In the innermost shell (shell range  r1=[0,2.5[  Å atomic basis functions of the pcS-2 type

were used, whereas for the second shell range, r2=[ 2.5,6 .0 [  Å the pc-1 basis64 was used. In the third

shell range,  r3≥6.0  Å the CEP-4G basis plus pseudo potentials as shipped with the GAUSSIAN 03

program were used. Further details on the cluster setup are listed in Table 1.

The GAUSSIAN 0365 program package was used for electronic structure calculations within

EEIM. The hybrid density functional mPW1PW66 is used throughout with tight convergence criteria for

the SCF. Quadrature in the DFT calculations was performed on a pruned grid of 99 radial shells and

590  angular  points  per  shell  on  each  atom.  Atomic  charges  were  obtained  by  NBO  population

analysis-,67 absolute nuclear magnetic shielding tensors   by the GIAO method.68

Isotropic  chemical  shifts  iso  and  shift  tensor  eigenvalues  ii  are  calculated  from  the

corresponding absolute shielding values by the conversion equation 

ii , calc

13 C
=
 ii , calc

13 C
−A

B
, i=1,2,3 . (25)

with  A = 184.599 ppm and  B = -1.07156, that was derived from internal calibration of the shielding

tensor eigenvalues. (Figure S1 in the supplementary information shows the correlation of experimental

25



Avadhut et al. (2017).

and calculated shielding tensor eigenvalues and the calibration line that was used to determine the

parameters  A and  B in equation (25).)  Chemical shift anisotropy parameters (CSA) are given in the

Haeberlen-Mehring-Spiess convention49,69,70 i.e. in terms of the reduced anisotropy aniso=cc
P
− iso  and

the asymmetry =bb
P
− aa

P
/ aniso , where the shift tensor principal axes eigenvalues 11

P ,  22
P ,  33

P

have been sorted according to ∣ cc
P
−iso∣≥∣aa

P
− iso∣≥∣ bb

P
−iso∣ . 

By default the GAUSSIAN program changes the orientation of the molecular clusters to the so-called

standard orientation of  molecular  spectroscopy,  which  is  inconvenient  for  the  specification  of  the

shielding tensor orientation, however. By means of a suitable rotation matrix of the kind of equation (2)

we transformed the tensors to a locally defined “molecular” (M) Cartesian coordinate system or in

terms  of  the  crystal  coordinate  system  (C).  While  we  focus  on  the  latter  one  for  brevity  in  the

following, the orientation in the “molecular” frame has some conceptual advantages and is given in the

Supplemental Information.

Table 1: Setup of cluster calculations for L-alanine.

Calc. 

No

Cluster definitions

QC Typea Setupb

1 [L-ala]1

Figure 6a

EIM mPW1PW level, pcS-2 basis for all atoms;  N a=7 ,  N b=4 ,  N c=7 ,  ⌊N 1N 2 ⌋=500 ,

N rcp=1500 ;  rms=2.23×10−10 V

2 [L-ala]15

Figure 6b

EEIM mPW1PW level, basis in shell range  r 12.5 : pcS-2 for all atoms; range  2.5≤r26.0 :

pcS-1 for all atoms range  r3≥6.0 :  CEP-4G basis plus pseudo potentials for all atoms;

N a=7 , N b=4 , N c=7 , ⌊N 1N 2 ⌋=600 , N rcp=2300 ;  rms=3.88×10−7 V
a EIM=embedded ion method, EEIM=extended embedded ion method.

b formula ri  = shortest distance to one of the atoms of the central alanine molecule, for the meaning of other symbols see

ref. 60
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Figure 6: Quantum clusters chosen for EEIM calculations on L-alanine. (a): [L-ala]1, (b): [L-ala]15; all

atomic sites of the central alanine unit serve as reference points for the local basis expansion; atomic

site labels as in crystal structure.
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Results and Discussion 

In order to validate the proposed protocol and the hardware assembly for single-crystal MAS NMR

experiment,  single-crystals  of  L-alanine  and  O-phosphorylethanolamine  are  considered  as  model

systems. These are well investigated compounds both with respect to their crystal structures57–59 and

with respect to chemical shift tensors whose orientations are known from static single-crystal NMR

measurements with a goniometer probe.2,6,21,71     

The following section starts with the discussion on the proposed protocol followed by single-

crystal MAS NMR spectra for various orientations. We further discuss critical error sources which

could prevent routine application of this method. Finally we discuss the derived analytical function and

quantum chemical calculations.

A 13C slow MAS-NMR spectrum of a L-alanine powdered sample is recorded (see Figure 7) to

obtain the  chemical  shift  tensor  eigenvalues  and chemical  shift  anisotropy (CSA) parameters.  The

28

Figure  7: Slowly rotated  13C{1H} CP-MAS NMR spectrum MAS=500Hz  of powdered  L-alanine

(bottom)  and  simulated  spectrum  (top)  using  the  SIMPSON  program;50,51 the  optimized  CSA

parameters are shown in the 2.
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spectrum  shows three distinct signals CA , CB  and CC  at iso CA=177.1 ppm , iso CB=50.2ppm

and  iso CC =19.1ppm ,  respectively,  whose  assignment  to  the  crystallographic  sites  has  been

reported in ref. 2 and is affirmed by the EEIM calculations: site C1 corresponds to signal CA, C2 to CB,

and C3 to CC (see also Fig. 6a). Experimental eigenvalues and CSA parameters for 13C are derived from

sideband patterns of the slow MAS NMR spectrum and are given together with the calculated ones in

2.  Experimental  and calculated values are in  good agreement with root mean square deviations of

RMSD iso
exp ,iso

calc=0.7ppm  for isotropic chemical shifts and RMSD ii
exp ,ii

calc=1.5 ppm  for the nine

shift tensor eigenvalues. 

Table 2: Experimental and calculated 13C chemical shift parameters of L-alanine. Calculated values use

the site labeling of the crystal structure (see  Figure 6), experimental signals are labeled in  Figure 7.

Isotropic chemical shifts are given in col. 3, CSA values in cols. 4+5. For convenience the principal

axes values of the chemical shift tensor are given in col. 6-8.

Exp. and Calc. sites δiso/ppm b δaniso/ ppm b η δ11 /ppm b δ22 /ppm b δ33 /ppm b ref

Experiment

calc. 2 (Figure 6 b)

(calc. 1 (Figure 6 a)

CA

C1

C1

177.09

175.3c

177.4d

176.2e

173.09f

176.8g

176.4

177.1

-70.73

-70.33c

-70.33g

-72.8

-73.1

0.77

0.81c

0.78g

0.745

0.766

239.76

239.0c

239±4g

239.8

241.7

185.16

182.0c

184±3g

185.6

185.7

106.36

105.0c

106±1g

103.6

104.0)

This work

2

2

2

2

71

This work

This work

Experiment

calc. 2 (Figure 6 b),

(calc. 1 (Figure 6 a)

CB

C2

C2

50.22

50.7d

50.5e

49.44f

50.9g

51.1

52.1

-18.96

-19.66g

-20.8

-22.7

0.59

0.35g

0.502

0.444

65.36

63±1g

66.8

68.4

54.05

56±1g

56.3

58.4

31.27

30±3g

30.3

29.4)

This work

2

2

2

71

This work

This work

Experiment CC 19.73

20.0d

19.5e

11.49 0.96 31.23 19.54 8.42 This work

2

2
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calc. 2 (Figure 6 b)

(calc. 1 (Figure 6 a)

C3

C3

15.97f

19.8g

19.7

16.5

-12.0g

-12.4

-21.2

1.0g

0.806

0.584

31±2g

30.8

33.2

19±2g

20.9

20.9

7±2g

7.3

-4.7)

2

71

This work

This work
a calculated values for the central alanine molecule in the QC are given.
b chemical shifts calculated from absolute magnetic shieldings according to equation (25).
c experimental chemical shifts values from static measurement (ref 2)
d experimental chemical shifts values from MAS (powder sample) measurement (ref 2)
e experimental chemical shifts values from single-crystal measurement (ref 2)
f experimental chemical shifts values from solution pH=0.7 (ref 2)
g experimental chemical shifts values from MAS (powder sample) measurement (ref 72)

Discussion of the protocol 

To  perform  an  accurate  chemical  shift  tensors  analysis,  it  is  important  to  determine  the  precise

orientation of the single-crystal in the rotor system by an independent X-ray measurement. A precise

determination of the Euler angles between the crystal axis and the rotor system CR   is required (see

Figure 1). The problem of simulating single-crystal MAS pattern is solved only after the calculation of

a set of these three Euler angles. 

In  order  to  find  out  CR ,  following  transformations  are  carried  out.  The  Euler  angles

between the crystal coordinate system (C) and the diffractometer coordinate system (D)  CD   are

obtained via an X-ray measurement. The orientation of the single-crystal relative to the goniometer

coordinate  system  (G)  is  necessary  and  calculated  by  a  rotation  matrix,  RCG  ,  using

RCG =R DG⋅RCD  transformation, where,  RDG  is the rotation matrix from (D) to (G)

coordinate system. As explained previously (theory section), these two frames are not identical and in

our case differ by =0.56 °±0.36 ° . This could be one of the important sources of error if neglected.

Note that this mapping is diffractometer dependent and for other diffractometers    is very likely

different. Hence, an accurate determination of RCG   is possible (Experimental protocol, step-2).

Similarly, a set of Euler angles between the goniometer coordinate system (G) and the cube

coordinate system (W) is calculated. Here we considered the following mapping: e1
G
∥e3
W

, e2
G
∥e1
W

 and
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e3
G
∥e2
W

.  Hence,  the  rotation  matrix  from  C to  W is  calculated  using  R CW =R GW ⋅RCG

transformation (Experimental protocol, step-3).

Further we obtain the L-alanine single-crystal MAS NMR spectra with the "default" and "non-

default" cube orientation so called parallel and perpendicular orientation, respectively (Experimental

protocol, step-4 to step-6), using a doubly rotor-synchronized ramped cross polarization followed by

spin-echo experiment (Figure 5-II).

Now it  is  possible  to  calculate  the  required  set  of  Euler  angles  between  the  C and  R

coordinate system,  CR  , using RCR=RWR⋅RCW   transformation (experimental protocol,

step-7). In the case of  L-alanine, for  parallel orientation we obtained:  CR=275.37 ° ,  CR=14.29° ,

CR=22.1 ° ,  and  perpendicular orientation:  CR=118.108° ,  CR=79.3 ° ,  CR=174.525 °  are

calculated.  Error  analysis  of  the  present  NMR  data  shows  that  the  Euler  angles  describing  the

orientation of the crystal coordinate system relative to the rotor coordinate system are determined with

an accuracy of ±0.5° . 

It is also necessary to determine the orientation of the single-crystal relative to the trigger

marking of the rotor. Further we note explicitly, that the correct angle  CR  in real experiment also

depends on 1) the time delay between the trigger signal and the rf pulse which is depending on the

spectrometer and 2) the probe construction, i.e., the MAS detector position of the glass fiber. However

this timing problem can be eliminated by calibration of spectrometer constant/timing 0
RL . This has to

be done only once for the spectrometer using any single-crystal with precisely determined chemical

shift tensor (Experimental protocol, step-1). A single-crystal of O-phosphorylethanolamine is used to

calibrate spectrometer constant. In our case, the spectrometer constant is calculated as 273.04 °±0.05 °

. 

Discussion of single-crystal spectra 

The rotorsynchronized MAS patterns of the L-alanine single-crystal are plotted in Figure 8 and Figure

9 with the  parallel and the  perpendicular orientations, respectively. In both figures the experimental

spectrum is shown on the top and the simulations are plotted underneath using the calculated Euler

angles,  CR  (Experimental  protocol,  step-7),  and  the  spectrometer  constant  0
RL  (Experimental

protocol,  step-1).  These  plots  provide  an  overall  visual  comparison of  the  changes  of  the  spectra
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depending on the rotor position which is indicated by the angle CR . 

Clearly, the two spectra sets are distinctly different as is to be expected because in the first

case, the cube axes are parallel to the rotor axes whereas in the second case, it is perpendicular when

rotating around the e2
W

 axis by 90°. The spectral extension of the spinning sidebands are comparable

due to fact that that angle between rotor axis and the external magnetic field B0  is ≈54.74° . After a

full rotor period identical MAS spectra are obtained in the both cases. 
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In this test case of  L-alanine, the orientation of the  13C1 chemical shift tensor is determined with the

33

Figure 8: Comparison of (top) experimental rotorsynchronized 13C{1H} CP-MAS NMR spectra of L-

alanine with (bottom) simulations for cube axes parallel to the rotor axes; the simulation parameters

are:  δ11=239.7 ppm  δ22=185.1ppm ,  δ33=106.3 ppm ,  αPC=348.87 ° ,  βPC=94.99° ,

γPC=127.92 ° , αCR=275.37° , βCR=14.29 ° , γCR=22.1 ° , and α0
RL
=273.04 ° .
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help of exact  initial  orientation of the single-crystal  when the rf  pulse is  applied.  The problem of

simulating both the orientation patterns is simplified since only the rotor angle CR  is found for which

the simulation of the MAS pattern taken for the whole rotor cycle, matches the experimental spectrum

(Experimental protocol, step-8). The result is shown in the bottom spectrum of the  Figure 8 and the

Figure 9. It is now possible to follow the various changes of the line shapes as functions of the rotor

angle and there is clearly convincing coincidence between the simulated data and the experimental

data. 
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Figure 9: Comparison of (top) experimental rotorsynchronized 13C{1H} CP-MAS NMR spectra of L-

alanine  with (bottom)  simulations  for  cube  axes  perpendicular  to  the  rotor  axes;  the  simulation

parameters  are:  11=239.7 ppm  22=185.1 ppm ,  33=106.3 ppm ,  PC=348.87° ,   PC=94.99 ° ,

 PC=127.92° , CR=118.1° , CR=79.3 ° , CR=174.52 ° , and 0
RL
=273.04 ° .
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Error analysis 

There are minor deviations between the simulated and the experimental pattern possibly due to the

following  error  sources.  One  of  the  major  source  of  error  is  instabilities  in  the  MAS frequency.

Typically, for 1.5 kHz±1 Hz  sample spinning frequency, the error is about ±0.24 ° . The rotation of

the single-crystal inside the rotor does not cause any instabilities, possibly because the plastic insert

adds a significant amount of mass which is homogeneously distributed in the rotor. As described in the

hardware section, the cube was chosen such that it fits into the rotor insert but it does not mean that it is

tightly fixed by the rotor insert wall. In our case, the cube has an angular deviation of 0.024° inside the

rotor insert along the rotor axis. Hence it might well be the case that the crystallographic axis can be

tilted slightly with respect to the rotor axis during measurements which causes the error in the Euler

angle set  RCR  (see  Figure 1 and protocol step-7). Another source of error can be from X-ray

diffractometer which can determine the crystal to laboratory orientation within 0.01 °  accuracy which

affects/influences the staring Euler angle set R(ΩCG)  (see Figure 1 and protocol step-2). Moreover, a

further  source  of  error  could  be  caused  by fixing  the  single-crystal  from the  goniometer  into  the

cylindrical void of the cube and hence the set of Euler angle R(ΩGW )  (see Figure 1 and protocol step-

3).  However,  in  our  case  this  possible  source  of  error  is  negated  by  holding  the  mounting  tool

vertically.   Some  minor  errors  can  occur  while  fixing  the  standard  goniometer  adapter  on  the

homemade single-crystal mounting tool (Figure 4) which is neglected in this work. 

The simulations have shown, that the chemical shift tensors and their orientations in the

crystal coordinate system can be determined with an accuracy about ±1 ° . The angular deviations of

the tensor orientations from the single-crystal MAS and the traditional static single-crystal NMR2, and

the  single-crystal  MAS  and  the  quantum  chemical  calculations  are given  in  the  supplemental

information for the three tensor eigenvectors e i
P
C1i=1,2,3 . 

Numerical Validation 

In order to estimate an accuracy for the orientation determination, we have evaluated the complete set

of rotorsynchronized spectra over a full  rotor period using the derived analytical function.  For the

parallel and the perpendicular orientations, the line intensities and the phases of the dispersive spinning
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sidebands  are  plotted  in  the  Figure  10.  The  calculated  intensities  and the  phases  of  complete  2D

patterns for both the orientations are seen to agree closely with experimentally measured values.
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Figure  10: Spectra  obtained  using  the  derived  analytical  function  for  (top)  parallel  and  (bottom)

perpendicular orientations; the theoretical parameters are same as simulation parameters (see Figure 8

and Figure 9).
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To compare the simulated spectra and the spectra obtained from the derived analytical function

with  the  experimental  data  in  more  detail  few selected  slices  taken from  Figure  9 and  Figure  10

(bottom),  respectively,  are  shown  in  Figure  11.  The  simulated  spectra  and  the  spectra  from  the

analytical function are slightly shifted towards left (b) and right (c) with respect to the experimental

spectra (a), such that all line shapes can be compared more easily. Additionally, the sum projection

from all rotor positions obtained by experiment is compared with the simulated sum projection by

using  calculated  CR ,  CR ,  and  CR  for  both  the  orientations  (shown  in  the  supplementary

information) which shows all spinning sidebands are absorptive and positive.

The chemical shift tensor orientations of the 13C1 with respect to the crystal coordinate system

obtained by the MAS and the static NMR is shown in Figure 12. Additionally, tensor direction cosines

of the 13C1 from the MAS and the static are compared in reference 3. Hence, we can anticipate that with

the presented approach, the determination of the chemical tensors including their orientations can be

made as precise as with the traditional static single-crystal NMR.

39

Figure  11: Comparison of three slices for  perpendicular orientation of the rotorsynchronized MAS

NMR spectra (a) with the corresponding simulations (b) taken from  Figure 9 and spectra obtained

using the derived analytical function (c) taken from Figure 10 (bottom); the simulated spectra and the

spectra obtained by the analytical function are slightly shifted towards the left and the right to the

experimental spectra, respectively.
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Orientation relative to the crystal axis system

The orientation of the chemical shift tensors with respect to the crystal axes a, b, c is shown in Figure

12 and  is  given  in  terms  of  direction  cosines  in  Table  3.  The  tensors  are  shown  in  ellipsoid

representation73 with eigenvectors of principal axis system relative to the crystal axis system. Table 3

contains  also  the  Euler  angles  for  the  rotation  matrices  R PC C1 ,PC C1 ,PC C1   which

transform the P- of site C1 to the C coordinate system as well as the Euler angles for the rotation matrix

R CP C1 ,CP C1 , CP C1   for the back-transformation from the C- to the P- coordinate system.

The chemical shift tensors of symmetry-related, crystallographically identical sites (e.g. C1a and C1b)

have different orientations relative to the crystal axis system. 

The values obtained by single-crystal MAS compare well with those from Naito et al.2 and

with calculated ones obtained with the EEIM method (see Figure 12 and T 
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Figure  12: 13C  chemical  shift  tensors  orientation  of  13C1-labeled  L-alanine  in  comparison  to  the

molecular frame and the crystal axis system {e1,
C e2,
C e3
C
}  from MAS (thick), static (intermediate), and

EEIM (thin); all C-atoms were created by symmetry operation (x, y, z); tensors are shown in ellipsoid

representation60 with eigenvectors  e1
P

 (red),  e2
P

 (green),  and  e3
P

 (blue) relative to the crystal  axis

system ( e1
C

 (red), e2
C

 (green), and e3
C

 (blue)); atomic site labels as in crystal structure.
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Table 3: Direction cosines of chemical shift tensors of 13C1-labeled L-alanine to the respective crystal

coordinate system

Site Method Eigenvectors e1
C e2

C e3
C Euler Anglesa Euler Anglesa

C1b

(COO-) 

(carboxy)

MAS e1
P 0.203786 -0.052516 0.977605 PC 348.869 CP 52.079

Staticc e1
P 0.2005 -0.0719 0.9771 PC 348.669 CP 52.963

EEIM e1
P 0.190040 -0.071526 0.979167 PC 348.785 CP 52.676

MAS e2
P 0.763899 -0.616009 -0.192330 PC 94.899 CP 94.899

Static e2
P 0.7737 -0.6025 -0.2029 PC 93.7154 CP 93.7154

EEIM e2
P 0.773018 -0.603945 -0.194147 PC 93.4101 CP 93.4101

MAS e3
P 0.612314 0.785986 -0.085416  PC 127.919 CP 191.129

Static e3
P 0.6011 0.7966 -0.0648  PC 127.038 CP 191.331

EEIM e3
P 0.605250 0.793810 -0.059483  PC 127.324 CP 191.215

C1d

(carboxy)

MAS e1
P -0.203786 0.052516 0.977605 PC 348.869 CP 232.079

EEIM e1
P -0.190040 0.071526 0.979167 PC 348.785 CP 232.676

MAS e2
P -0.763899 0.616009 -0.192330 PC 94.899 CP 94.899

EEIM e2
P -0.773018 0.603945 -0.194147 PC 93.4101 CP 93.4101

MAS e3
P -0.612314 -0.785986 -0.085416  PC 307.919 CP 191.129

EEIM e3
P -0.605250 -0.793810 -0.059483 PC 307.324 CP 191.215

C1e

(carboxy)

MAS e1
P -0.203786 -0.052516 -0.977605 PC 168.869 CP 127.920

EEIM e1
P --0.190040 -0.071526 -0.979167 PC 168.785 CP 127.324

MAS e2
P -0.763899 -0.616009 0.192330 PC 85.100 CP 85.100

EEIM e2
P -0.773018 -0.603945 0.194147 PC 86.5899 CP 86.590

MAS e3
P -0.612314 0.785986 0.085416 PC 52.080 CP 11.129

EEIM e3
P -0.605250 0.793810 0.059483 PC 52.6759 CP 11.215

C1f

(carboxy)

MAS e1
P 0.203786 0.052516 -0.977605 αPC 168.869 αCP 307.920

EEIM e1
P 0.190040 0.071526 -0.979167 αPC 168.785 αCP 307.324

MAS e2
P 0.763899 0.616009 0.192330 βPC 85.100 βCP 85.100

EEIM e2
P 0.773018 0.603945 0.194147 βPC 86.5899 βCP 86.590

MAS e3
P 0.612314 -0.785986 0.085416 γPC 232.080 γCP 11.129
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EEIM e3
P 0.605250 -0.793810 0.059483 γPC 232.676 γCP 11.215

a All angles in degree
b Atoms created by symmetry operation x, y, z

c Experimental direction cosines from Naito et al. 2. formula e2
P(C1)  and formula e3

P(C1 )  inverted (corresponds to a 

rotation around formula e1
P(C1 )  by 180°).

d Atoms created by symmetry operation -x+0.5, -y, z+0.5
e Atoms created by symmetry operation -x, y+0,5, -z+0.5
f Atoms created by symmetry operation x+0.5, -y+0.5, -z
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Conclusions

For the first time, we have shown that rotor-synchronized single-crystal MAS-NMR spectra can give

access to full tensor information (eigenvalues and eigenvectors), even if the tensor has an arbitrary

orientation with respect to the crystal frame. We have given a full implementation in theory as well as

in hardware and have suggested a protocol, which can be used to obtain accurate chemical shift tensor

orientations with respect to any of the typically used frames, of which the crystal or the molecular

frame are frequently used. 

A cost-effective homemade single-crystal  mounting  tool  provides  high accuracy for  mounting and

remounting  a  single-crystal  in  various  orientations  inside  the  magic  angle  spinning rotor  with  the

stability of MAS frequency. The proposed hardware assembly is a mandatory, essential, and primary

requirement to use this method as a routine tool and may be transferred to different rotor types as well

as rotor sizes. The specialized homemade rotor insert design achieves stable spinning frequencies up to

15 kHz. A thorough/detailed experimental protocol based on phase corrected, rotor-synchronized pulse

sequences leads to full chemical shift tensor information as precise as with typical static single-crystal

NMR experiments.  An analytical  function is  derived to  calculate  the intensities  and phases of  the

dispersive  line shape of the spinning sidebands and yields shift tensor orientations that agree closely

(deviations  below  ±1 °  in  Euler  angles)  with  calculated  values  or  those  determined  by  static

experiments. The derived analytical function may lead to a software development for deconvolution

since it allows fast calculation of single-crystal MAS spectra. As an example, the chemical shift tensor

orientations of 13C1-labeled L-alanine in the crystal coordinate system are determined and supported by

quantum chemical EEIM calculations. 

The potential advantages of this method are low cost, large resolution enhancement, use of

standard MAS probes, and considerable time saving compared to the traditional static single-crystal

NMR. Further,  this  method offers better  spectral  resolution in  case of small  single-crystals  due to

suppression of dipole-dipole couplings by magic angle spinning. A foreseeable application is to obtain

chemical shift tensor orientations in partially oriented materials. Also, this method can be extended to

all other rank 2 interaction tensors detectable by NMR. An extension to quadrupolar tensors/electric

field gradients by the piggyback/microcoil design was already done in the mean time27, although for a

simple case, where the quadrupolar tensor orientation coincides with the symmetry axes of the crystal.
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Our method can be used as a routine/standard tool to determine the tensors in arbitrary orientations

with respect to the crystal frame. Furthermore, it could become useful to study motion and dynamics in

crystals, for example ion dynamics, which would add a spatial dimension to the NMR analysis which is

lacking  in  many  of  the  standard  NMR  techniques.  Finally,  tensor  orientation  data  may  help  to

determine the space-group in difficult cases, that are not solvable by X-ray diffraction alone. When the

accuracy  shielding  tensor  orientations  is  of  primary  interest,  the  selective  excitation  of  similarly

oriented crystallites may only comprise a tiny subset, which has a effectively smaller sample volume

than the our used single crystals.
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