Structures and Properties of Solids

- Friday 20.10.06: 12.00-14.00, F002
- Friday 27.10.06: 12.00-14.00, F002
- Friday 03.11.06: 12.00-14.00, F002
- Friday 10.11.06: 12.00-14.00, F002

Outline

1. Introduction

2. Structure of solids

- 2.1 Basics of structures (geometrical concepts)
- 2.2 Simple close packed structures: metals
- 2.3 Basic structure types
- 3. Characterization of solids
- 3.1 Diffraction
- 3.2 Imaging
- 4. Synthesis
- 4.1 HT-synthesis
- 4.2 CVT

1.Introduction Why is the solid state interesting?

2 9 10 12 13 14 15 16 17 Group 3 5 6 8 11 18 Period 2 1 Η He З 4 9 10 5 8 6 -7 2 В С F N. 0 Be Ne 12 11 13 14 15 16 17 18 3 Al CI Si Ρ S Na Mg. Ar 20 22 23 25 26 27 29 31 32 33 34 35 36 19 21 24 28 30 4 Sc Ti V Cr Fe Co Cu Ga Ge As. Se Br K Ca Mn Ni Zn Kr 54 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 5 Rb Sr Y. Zr Nb Tc Ru Rh Pd Ag Cd In Sn Sb Те Ι Mo Xe 82 83 55 56 71 72 73 74 75 76 77 78 79 80 81 84 85 86 ж 6 Ba Lu Hf Та W. Re Os Ir Pt Au Hg TL Pb Bi Po At. Rn 87 88 104 105 108 109 112 113 114 115 116 117 103 106 107 110 111 118 ** 7 Rf Uup Ra Lr Db Sa Bh Hs Mt Uun Uuu Uub Uut Uua Uuh Uuo 60 61 63 64 66 68 ж *Lanthanoids Ce Pr Nd Pm Eu Gd тb DV. Ho Τm Yb. La 94 ** **Actinoids Md

Most elements are solid at room temperature

Solid Biomaterials (enamel, bones, shells...) Nanomaterials (quantum dots, nanotubes...)

1. Introduction Special aspects of solid state chemistry

Close relationship to solid state physics and materials science Importance of structural chemistry

- Knowledge of several structure types
- Understanding of structures

Physical methods for the characterization of solids

- X-ray structure analysis, electron microscopy...
- Thermal analysis, spectroscopy, conductivity measurements ...

Investigation and tuning of physical properties

- Magnetism, conductivity, sorption, luminescence
- Defects in solids: point defects, dislocations, grain boundaries

Synthesis

- HT-synthesis, hydrothermal synthesis, soft chemistry (chemistry)
- Strategies for crystal growth (physics)

1. Introduction Classifications for solids (examples)

Degree of order

- Long range order: crystals (3D periodicity)
- Long range order with extended defects (dislocations...)
- Crystals with disorder of a partial structure (ionic conductors)
- Amorphous solids, glasses (short range order)

Chemical bonding – typical properties

- Covalent solids (e.g. diamond, boron nitride): extreme hardness ...
- Ionic solids (e.g. NaCI): ionic conductivity ...
- Metals (e.g. Cu): high conductivity at low temperatures

Structure and Symmetry

- Packing of atoms: close packed structure (high space filling)
- Characteristic symmetry: cubic, hexagonal, centrosymmetric/non-centrosymmetric...

Basic Structures

2.1 Basics of Structures Visualization of structures

How can we display structures in the form of images?

Example: Cristobalite (SiO₂)

Approach 1

Packing of spheres **Bragg jun. (1920)**

Atoms = spheres

Approach 2

Coordination polyhedra Pauling (1928)

SiO₄-tetrahedra

Approach 3

Description of topology Wells (1954)

no atoms, 3D nets

One structure but very different types of structure images

2.1 Basics of Structures Approximation: atoms can be treated like spheres

2.1 Basics of Structures Trends of the atomic / ionic radii

- Increase on going down a group (additional electrons in different shells)
- Decrease across a period (additional electrons in the same shell)
- Ionic radii increase with increasing CN (the higher its CN, the bigger the ions seems to be, due to increasing d!!!)
- Ionic radius of a given atom decreases with increasing charge (r(Fe²⁺) > r(Fe³⁺))
- Cations are usually the smaller ions in a cation/anion combination (exception: r(Cs⁺) > r(F⁻))
- Particularities: Ga < Al (d-block)

2.1 Basics of Structures Structure, lattice and motif

- Lattice: Determined by lattice vectors and angles
- Motif: Characteristic structural feature, e.g. molecule
- Structure = Lattice + Motif
- Unit cell: Parallel sided region from which the entire crystal can be constructed by purely translational displacements (Conventions!!!)

2.1 Basics of Structures Determine the unit cells

2.1 Basics of Structures Unit cells and crystal system

- Millions of structures but 7 types of primitive cells (crystal systems)
- Crystal system = particular restriction concerning the unit cell
- Crystal system = unit cell with characteristic symmetry elements (SSC)

Crystal system	Restrictions axes	Restrictions angles
Triclinic	-	-
Monoclinic	-	$\alpha = \gamma = 90^{\circ}$
Orthorhombic	-	$\alpha = \beta = \gamma = 90^{\circ}$
Tetragonal	a = b	$\alpha = \beta = \gamma = 90^{\circ}$
Trigonal	a = b	$\alpha = \beta = 90^{\circ}, \ \gamma = 120^{\circ}$
Hexagonal	a = b	$\alpha = \beta = 90^{\circ}, \ \gamma = 120^{\circ}$
Cubic	a = b = c	$\alpha = \beta = \gamma = 90^{\circ}$

2.1 Basics of Structures Fractional coordinates (position of the atoms)

- possible values for x, y, z: [0; 1], atoms are multiplied by translations
- atoms are generated by symmetry elements (see SSC)
- Example: Sphalerite (ZnS)
- Equivalent points are represented by one triplet only
 - equivalent by translation
 - equivalent by other symmetry elements (see SSC)

2.1 Basics of Structures Number of atoms/cell (Z: number of formula units)

Molecular compounds: molecules determine the stoichiometry lonic or metallic compounds: content of unit cell \leftrightarrow stoichiometry

How to count atoms?

Rectangular cells:

- Atom completely inside unit cell: count = 1.0
- Atom on a face of the unit cell: count = 0.5
- Atom on an edge of the unit cell: count = 0.25
- Atom on a corner of the unit cell: count = 0.125

Example 1: Sphalerite

Example 2: Wurzite

Fraction of the atoms in unit cell

Occupancy factor: number of atoms on one particular site

2.2 Simple close packed structures (metals) Close packing in 2D

Metal atoms \rightarrow Spheres

2.2 Simple close packed structures (metals) Close packing in 3D

3D close packing: different stacking sequences of close packed layers

stacking sequence: AB

stacking sequence: ABC

Polytypes: mixing of HCP and CCP, e. g. La, ABAC

2.2 Simple close packed structures (metals) Unit cells of HCP and CCP

Common properties: CN = 12, space filling = 74%

2.2 Simple close packed structures (metals) Other types of metal structures

Example 2: primitive packing $(\alpha - Po)$ space filling = 52% CN = 6, octahedron

Example 3: structures of manganese

2.2 Basics of Structures Visualization of structures – polyhedra

Example: Cristobalite (SiO₂)

Bragg jun. (1920) Sphere packing

Pauling (1928) Polyhedra

Wells (1954) 3D nets

2.2 Simple close packed structures (metals) Holes in close packed structures

Different point of view \rightarrow description of the environment of holes

Filled holes: Concept of polyhedra

2.2 Simple close packed structures (metals) Properties of OH and TH in CCP

Number OH/TH (with respect to n-atoms/unit cell)

Location

OH: center, all edges TH: center of each octant

Distances OH/TH

OH-OH: no short distances TH-TH: no short distances !OH-TH!

"Basic": anions form CCP or HCP, cations in OH and/or TH

Structure type	Examples	Packing	Holes filled
			OH and TH
NaCl	AgCl, BaS, CaO, CeSe, GdN, NaF, <mark>Na₃BiO₄, V₇C₈</mark>	CCP	n and On
NiAs	TiS, CoS, CoSb, AuSn	HCP	n and On
CaF ₂	CdF ₂ , CeO ₂ , Li ₂ O, Rb ₂ O, SrCl ₂ , ThO ₂ , ZrO ₂ , AuIn ₂	CCP	0 and 2n
CdCl ₂	$\begin{array}{c} MgCl_2, MnCl_2, FeCl_2, Cs_2O, \\ CoCl_2 \end{array}$	ССР	0.5n and 0
Cdl ₂	$\begin{array}{l} MgBr_2, PbI_2, SnS_2, \\ Mg(OH)_2, Cd(OH)_2, Ag_2F \end{array}$	HCP	0.5n and 0
Sphalerite (ZnS)	Agl, BeTe, CdS, Cul, GaAs, GaP, HgS, InAs, ZnTe	CCP	0 and 0.5n
Wurzite (ZnS)	AIN, BeO, ZnO, CdS (HT)	HCP	0 and 0.5n
Li ₃ Bi	Li ₃ Au	CCP	n and 2n
ReB ₂	!wrong! (SSC)	HCP	0 and 2n

2.3 Basic structure types Pauling rule no. 1

A polyhedron of anions is formed about each cation, the cation-anion distance is determined by the sum of ionic radii and the coordination number by the radius ratio: r(cation)/r(anion)

Scenario for radius ratios:

r(cation)/r(anion) < optimum value

r(cation)/r(anion) = optimum value r(cation)/r(anion) > optimum value

worst case (not stable)

optimum

low space filling (switching to higher CN)

2.3 Basic structure types Pauling rule no. 1

coordination	anion polyhedron	radius ratios	cation
3	triangle	0.15-0.22	B in borates
4	tetrahedron	0.22-0.41	Si, Al in oxides
6	octahedron	0.41-0.73	Al, Fe, Mg, Ca in oxides
8	cube	0.73-1.00	Cs in CsCl
12	close packing (anti)cuboctahedron	1.00	metals

2.3 Basic structure types NaCl-type

Variations of basic structure types:

 $\frac{\text{Superstructure}}{\text{Na} \rightarrow \text{Li, Fe}}$

- All octahedral holes of CCP filled, type = antitype
- Na is coordinated by 6 CI, CI is coordinated by 6 Na
- One NaCl₆-octaherdon is coordinated by 12 NaCl₆-octahedra
- Connection of octahedra by common edges

2.3 Basic structure types Sphalerite-type

- Diamond-type structure, or: 50% of TH in CCP filled
- Connected layers, sequence (S-layers): ABC, polytypes
- Zn, S coordinated by 4 S, Zn (tetrahedra, common corners), type = antitype
- Hexagonal variant (wurzite) and polytypes
- VEC = 4 for ZnS-type (Agl, CdS, BeS, GaAs, SiC)
- Many superstructures: Cu_3SbS_4 (famatinite, VEC = 32/8)
- Vacancy phases: Ga₂Te₃ (1SV), Culn₃Se₅ (1 SV), AgGa5Te8 (2 SV)
- Applications: semiconductors, solar cells, transistors, LED, laser...

2.3 Basic structure types CaF_2 -type

Fracture is closed by monoclinic ZrO₂ (increase of volume)

Features:

Ζ

- All TH of CCP filled
- F is coordinated by 4 Ca (tetrahedron)
- Ca is coordinated by 8 F (cube)
- Oxides MO₂ as high-temperature anionic conductors
- High performance ceramics

2.3 Basic structure types NiAs-type

Crystal data

Formula sum Crystal system Unit cell dimensions Z

<u>NiAs</u>

- All OH of HCP filled, metal-metal-bonding (common faces of octahedra!)
- Ni is coordinated by 6 As (octahedron)
- As is coordinated by 6 Ni (trigonal prism)
- Type ≠ antitype

2.3 Basic structure types Oxides: Rutile (TiO_2)

Crystal data

Formula sum Crystal system Unit cell dimensions Z

 $\frac{\text{TiO}_2}{\text{tetragonal}}$ a = 4.5937 Å, c = 2.9587 Å 2

- No HCP arrangement of O (CN(O,O) = 11, tetragonal close packing)
- Mixed corner and edge sharing of TiO₆-octahedra
- Columns of trans edge sharing TiO₆-octahedra, connected by common corners
- Many structural variants (CaCl₂, Markasite)
- Application: pigment...

2.3 Basic structure types Oxides: undistorted perovskite ($SrTiO_3$)

- Filled ReO₃ phase, CN (Ca) = 12 (cuboctaehdron), CN (Ti) = 6 (octahedron)
- Ca and O forming CCP, Ti forms primitive arrangement
- Many distorted variants (BaTiO₃, even the mineral CaTiO₃ is distorted!)
- Many defect variants (HT-superconductors, YBa₂Cu₃O_{7-x})
- Hexagonal variants and polytypes

2.3 Basic structure types Oxides: Spinel ($MgAl_2O_4$)

- Distorted CCP of O
- Mg in tetrahedral holes (12.5%), no connection of tetrahedra
- Al in octahedral holes (50%), common edges/corners
- Inverse spinel structures $Mg_{TH}AI_{2OH}O_4 \rightarrow In_{TH}(Mg, In)_{OH}O_4$
- Application: ferrites (magnetic materials), biomagnetism

2.3 Basic structure types Oxides: Silicates- overview 1

From simple building units to complex structures

Structural features:

- fundamental building unit (b.u.): SiO₄ tetrahedron
- isolated tetrahedra and/or tetrahedra connected via common corners
- MO₆ octahedra , MO₄ tetrahedra (M = Fe, Al, Co, Ni...)

Composition of characteristic b.u.: Determine the composition and relative number of different b.u.

2.3 Basic structure types Oxides: Silicates- overview 2

2.3 Basic structure types Oxides: Silicates- overview 3

x: Al content, charge of microporous framework, n: charge of A

Zeolites

• Alumosilicates with open channels or cages (d < 2 nm, "boiling stones")

• Numerous applications: adsorbent, catalysis...

2.3 Basic structure types Intermetallics- overview

Solid solutions: random arrangement of species on the same position Examples: Rb_xCs_{1-x} BCC, Ag_xAu_{1-x} CCP

The species must be related

- Chemically related species
- Small difference in electronegativity
- Similar number of valence electrons
- Similar atomic radius
- (High temperature)

Ordered structures: from complex building units to complex structures

Exception: simple structures

Characterization of Solids

4. Introduction Noble prizes associated with X-ray diffraction

- 1901 W. C. Roentgen (Physics) for the discovery of X-rays.
- 1914 M. von Laue (Physics) for X-ray diffraction from crystals.
- 1915 W. H. and W. L. Bragg (Physics) for structure derived from X-ray diffraction.
- 1917 C. G. Barkla (Physics) for characteristic radiation of elements.
- 1924 K. M. G. Siegbahn (Physics) for X-ray spectroscopy.
- 1927 A. H. Compton (Physics) for scattering of X-rays by electrons.
- 1936 P. Debye (Chemistry) for diffraction of X-rays and electrons in gases.
- 1962 M. Perutz and J. Kendrew (Chemistry) for the structure of hemoglobin.
- 1962 J. Watson, M. Wilkins, and F. Crick (Medicine) for the structure of DNA.
- 1979 A. Cormack and G. Newbold Hounsfield (Medicine) for computed axial tomography.
- 1981 K. M. Siegbahn (Physics) for high resolution electron spectroscopy.
- 1985 H. Hauptman and J. Karle (Chemistry) for direct methods to determine structures.
- 1988 J. Deisenhofer, R. Huber, and H. Michel (Chemistry) for the structures of proteins that are crucial to photosynthesis.

4.1 Diffraction Generation of X-rays

4.1 Diffraction Geometrical approach, Bragg's law (BL)

4.1 Diffraction Results of diffraction studies- Overview

Lattice parameters

Position of the reflections (Bragg's law), e. g. $(1/d)^2 = (1/a)^2 [h^2 + k^2 + l^2]$

Symmetry of the structure

Intensity of the reflections and geometry of DP = symmetry of DP

Identification of samples (fingerprint)

Structure, fractional coordinates...:

Intensity of the reflections, quantitative analysis (solution and refinement)

Crystal size and perfection

Profile of the reflections

Special techniques

- Electron diffraction: highly significant data, SAED (DP of different areas of one crystal)
- Neutron diffraction: localization of H, analyses of magnetic structures
- Synchrotron: small crystals, large structures (protein structures)

4.2 Imaging Optical microscopy and SEM- Possibilities

- Analysis of the homogeneity of the sample (color...)
- Selection of single crystals for structure determination
- Determination of the crystal class by analyzing the morphology
- Analysis of peculiar features of the morphology (steps, kinks...)
- SEM: Determination of the stoichiometry (EDX, cf. X-ray tube)

4.2 Imaging TEM- Basics of physics

Light microscope

Disadvantage: low resolution

Abbe (Theory of light microscops resolution) The smaller the wavelength, the higher the resolution

> **De Broglie (Electrons as waves)** Fast electrons possess small wavelength

Consequence: Microscopy with high-energy radiation Consequence: Microscopy with "fast electrons"

Advantage of electrons: negative charge Acceleration and focusing in magnetic or electric fields

4.2 Imaging TEM- Basics of Hardware

4.2 Imaging HRTEM- Basics

Imaging of real structures on the atomic scale (HRTEM)

1 nm

Black dots: positions of atoms White dots: positions of cavities of the structure

Synthesis

4. Introduction Goals of synthesis / preparation

- Synthesis of new compounds
- Synthesis of highly pure, but known compounds
- Synthesis of highly pure single crystals (lceberg-principle)
- Structural modification of known compounds bulk-structures and nanostructures

HV: 20.0 kV VAC: HiVac

DATE: 03/31/06 5 um Device: TS5130MM

Vega @Tescan

MPI-EKE

4.1 HT-synthesis Introduction

Standard procedure:

"Shake and bake", "heat and beat", "trial and error"

"The starting materials are finely grinded, pressed to a pellet and heated to a temperature "near" the melting temperature."

Parameters influencing the reaction:

- Purity of educts (sublimation)
- Handling of educts (glove box, Schlenck technique)
- Temperature: T(reaction) > 2/3 T(melting point), rule of Tamann. Effects on real structure (more defects at elevated T) and diffusion (increase with T)
- Solid state reactions are exothermic, "thermodynamically controlled": Consequence: No metastable products (see e.g. Zeolites)
- Porosity, grain size distribution and contact planes: High reactivity of nanoparticles / colloids (low CN)

4.1 HT-synthesis Practical work

Experimental consequences:

- (1) large contact areas
- (2) small path lengths
- (3) small pore volume

Reactive sintering: pellets of fine powders

Problems / Pitfalls:

- "Chemical problems" of containers materials: use of reactive materials remedy: double / coated containers
- "Physical problems" of containers: compatible expansion/compression coefficients, sufficiently stable to withstand pressure
- Separation of educts, remedy: special furnaces, reduced free volume, tricks
- No intrinsic purification processes

Ex.: $2 \operatorname{Li}_2 \operatorname{CO}_3 + \operatorname{SiO}_2 \rightarrow \operatorname{Li}_4 \operatorname{SiO}_4 + 2\operatorname{CO}_2 (800 \,^\circ\text{C}, 24 \,\text{h})$

- Li-compounds are highly reactive against containers (use of Au)
- Production of a gas, consequence: cracking of containers

4.1 HT-synthesis Tricks

- Application of a "gaseous solvent" chemical or vapour phase transport Ex.: $Cr_2O_3(s) + 3/2 O_2(g) \rightarrow 2 CrO_3(g)$ MgO(s) + 2 CrO₃(g) \rightarrow MgCr₂O₄(s) + 3/2 O₂(g)
- Separation of educts in a temperature gradient (to avoid explosions) Ex.: 2 Ga(I) + 3 S(g) \rightarrow Ga₂S₃(g)
- Use of precursors for reactive educts
 - Ex.: Thermal decomposition of MN_3 (M = Na, K, Rb, Cs) Thermal release of reactive gases: (O_2 : MnO_2 , CO_2 : $BaCO_3$, H_2 : LnH_2) Coprecipitation and thermal decomposition (e.g. oxalates to oxides)
- Use of fluxes

Ex.: $Li_2CO_3 + 5 Fe_2O_3 \rightarrow 2 LiFe_5O_8 + CO_2(g)$ (incompl. :grind-fire-regrind, etc.) Or: Flux of Li_2SO_4/Na_2SO_4 (dissolves Li_2CO_3 , remove flux with water)

• Metathesis reaction Ex.: $2GaCl_3 + 3Na_2Te \rightarrow Ga_2Te_3 + 6NaCl$, very exothermic!

4.2 CVT Introduction

A <u>solid</u> is <u>dissolved</u> in the <u>gas phase</u> at one place (T=T1) by reaction with a <u>transporting agent</u> (e.g. I_2). At another place (T=T2) the solid is <u>condensed</u> again. Use of a temperature gradient.

$$ZnS(s) + I_2(g) = ZnI_2(s) + S(g)$$

- Used for purification and synthesis of single crystals (fundamental research)
- Reactions with large absolute value of ΔH° gives no measurable transport
- The sign of ΔH° determines the direction of transport: exothermic reactions: transport from cold to hot endothermic reactions: transport from hot to cold.

4.2 CVT Examples

- Mond-process: Ni(s) + 4 CO(g) = Ni(CO)₄(g)
 ΔH° = -300 kJ/mol, transport from 80° to 200°C
- Van Arkel / De Boer: Zr(s) + 2 I₂(g) = ZrI₄(g); (280 to 1450 °C)
- Si(s) + SiX₄(g) = 2 SiX₂(g); (1100° to 900°)
- Mixtures of Cu and Cu₂O: 3 Cu(s) + 3 HCl(g) = Cu₃Cl₃(g) + (3/2) H₂(g); (High T to Low T) 3/2 Cu2O(s) + 3 HCl(g) = Cu₃Cl₃(g) + 3/2 H₂O(g); (Low T to High T)
- Transport of Cu₂O(s): 3/2 Cu₂O(s) + 3 HCl(g) = Cu₃Cl₃(g) + 3/2 H₂O(g); (Low T to High T) Cu₂O(s) + 2 HCl(g) = 2 CuCl(g) + H₂O(g); (High T to Low T)