Surface Energy

Prof. Dr. Ulrich Jonas Macromolecular Chemistry Department Chemistry - Biology University of Siegen

The work W_{11} to bring two identical ideal surfaces in vacuum together is related to the surface energy γ_1 of the material:

$$W_{11} = -2 \ \gamma_1 \qquad \text{(normalized to unit area!)}$$

 W_{11} corresponds to to the work of **cohesion** in an ideal case and is normalized to the area of the surfaces. This **work** should be identical to **separating** a body into two halves. In reality the separation process is irreversible (due to energy dissipation), thus the separation / cohesion work is larger than the surface energy.

 \Rightarrow high surface energy \leftrightarrow strong cohesion \rightarrow high boiling point...

substrate material	surface energy γ (mJ m⁻²)
mica	4500
gold	~1000
PTFE	19
OTE (octadecane surface)	28

about 1/6 new surface per structure element in the cleavage plane

⇒ high energy surfaces tend to reduce energy by adsorption of contaminants from environment !

Surface Tension

Surface tension γ is defined by the infinitesimal work d*w* required to increase the surface by an infinitesimal area d σ :

$$dw = \gamma \delta \sigma$$

- \rightarrow work has to be applied to increase surface, since liquids tend to minimize their surface (spherical droplet)
- \rightarrow force balance

- \rightarrow surface tension of liquids corresponds to surface energy of solids
- \rightarrow surface tension / surface energy correlates to evaporation enthalpy $\Delta H_{_{vap}}$ (approximation)

material	γ (mN m⁻¹)	ΔH_{vap} (kJ mol ⁻¹)	
C ₆ H ₆	28.8	30.8	
MeOH	26.6	35.3	~ 5/6 new surface
H ₂ O	72.7	40.7	per structure
Hg	472	59.3	element

Measuring Surface Tension

The Young–Laplace equation describes the pressure difference Δp between the inside and the outside of a curved object (bubble, droplet, cavity) with radius r_a and r_b ($r_a \perp r_b$, in symmetric geometry $r = r_a = r_b$) with respect to the surface tension γ :

b) drop weight method: maximum drop size before release $m_{drop} g = 2\pi r_k \gamma$ with weight of drop m_{drop} $\Rightarrow 4/3 \pi r_{drop} \rho_{liq} g = 2\pi r_k \gamma$

c) Wilhelmi plate method: force F (in addition to gravitational force) on a plate with width I partially immersed into a liquid $F = 2I \gamma$

Cohesion

Cohesion forces act within a condensed material (liquid, solid) to keep it together.

work of cohesion W_{11} : free energy change, or reversible work done, to cleave / separate a material from contact to infinity in vacuum

- cohesion in amorphous solids and liquids is isotropic: \rightarrow random fracture plane (e.g. glass)
- cohesion in crystalline solids is anisotropic:
- \rightarrow fracture along crystal planes (e.g. Si single crystal wafer)

Adhesion

The adhesion forces act between the surfaces of two different condensed bodies in contact.

- \rightarrow this process can be split into two hypothetical steps:
 - a) generate new surface for materials 1 and 2 in vacuum: $W = \gamma_1 + \gamma_2$ (normalized to unit area!)
- b) bring two new surfaces into contact (work of adhesion): W₁₂

 \Rightarrow since all media attract each other (assuming neutral total charge) in vacuum: work of cohesion (W₁₁) and work of adhesion (W₁₂) are always positive (work is required to separate material)!

Measurement of Adhesion

RF

a =

- microscopic: the Hertz and JKR (Johnson, Kendal, Roberts) models
 - Hertz: sphere on surface in vacuum, no adhesion, only elastic deformation
 - \rightarrow contact radius ($\gamma_{12} = 0 \text{ J m}^{-2}$):
 - K : elastic modulus of sphere
 - JKR: sphere on surface in vacuum, adhesive deformation contact radius

$$\rightarrow$$
 contact radius: $a_0(F=0N) = \sqrt[3]{\frac{12\pi R^2 \gamma_{12}}{K}} = F_s$

– macroscopic: peel-adhesion test \rightarrow adhesive tape testing

adhesive tape is applied to hard surface under specific conditions and removed at specified rate and angle (180°)

 \rightarrow force for debonding process is measured $\rm F_{debond}$

- ⇒ can be measured in the surface force apparatus (SFA)

oull–off force:
$$F_s = -3\pi R \gamma_{12}$$

Practical Example: Adhesive Tape

tack: in adhesives tack describes the property to bond at moderate applied pressure (tack involves both, 1. bonding and 2. debonding step)

adhesion layer: – base elastomer (rubber, polyacrylates, block copolymers), high M_w, low T_g (below RT) – tackifiers (rosin, terpenes, hydrocarbon resins), low M_w (300–3000 g/mol), high T_g (> RT)

primer: increases adhesion (→ covalent bonding) of adhesive layer to backing (phenolic elastomer resins, corona–treatment, chlorinated polyolefins)

backing: supports adhesive layer, mechanical strength (paper, polypropylene)

release coating: reduces adhesion of adhesive layer and allows release of rolled up tapes etc. (silicones, alkyds, stearyl derivatives of vinyl polymers)

physical parameters determining adhesion properties:

- **tack**: immediate "bond" formation upon contact with surface
- **adhesion**: force required to remove adhesive tape / "break bond" \rightarrow depends on debonding process
- cohesion: internal mechanical strength that holds adhesive layer (and whole tape structure) together