Imaging Methods: Scanning Force Microscopy (SFM / AFM)

The atomic force microscope (AFM) probes the surface of a sample with a sharp tip, a couple of
microns long and often less than 100 A in diameter. The tip is located at the free end of a
cantilever that is 100 to 200 um long. Forces (108 — 10-° N) between the tip and the sample
surface cause the cantilever to bend, or deflect. A detector measures the cantilever deflection
as the tip is scanned over the sample, or the sample is scanned under the tip. The measured
cantilever deflections allow a computer to generate a map of surface topography. AFMs can be
used to study insulators and semiconductors as well as electrical conductors. Prof. Dr. Ulrich Jonas
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SFM / AFM: Contact, Non- / Intermittent Contact, Friction

contact AFM image

contact (repulsive) mode: tip makes soft "physical contact" with the
sample, the tip is attached to the end of a cantilever with a low spring
constant (lower than the effective spring constant holding the atoms of the ™
sample together), the contact force causes the cantilever to bend to
accommodate changes in topography

non-contact / intermittent contact: AFM cantilever is vibrated near the

surface of a sample with spacing on the order of tens to hundreds of ——~TTT N
angstroms for non-contact or touching of the surface at lowest deflection _

for intermittent contact ("tapping mode") ’==§§§\v' dvibration
phase mode: compare phase of driving signal and cantilever response w

(information on elastic modulus of surface material

lateral force / friction mode: AFM cantilever in contact mode is laterally deflected in the sample
plane due to scanning motion perpendicular to cantilever axes, lateral deflection is measured
and gives information on surface material apart from topography
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Imaging Methods: Scanning Tunneling Microscopy (STM)

sharp conducting tip is scanned over conducting surface and electrons tunneling between tip
and surface (depends on bias voltage) at a separation below ~10 angstroms are measured with
respect to tip position
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STM: Constant-Height versus Constant-Current Mode

constant height mode: the tip is scanned over the surface
keeping the vertical tip position constant, topography /
conductivity differences are mapped by recording variations in
tunnel current with respect to x-y-position of tip

constant current mode: the vertical tip position is adjusted
during scanning to keep tunnel current constant, topography /
conductivity map is constructed from vertical tip position with
respect to x-y-position
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Imaging Methods: Nearfield Scanning Optical Microscopy (NSOM)

integration of optical microscopy tools with scanning probe techniques allows resolution far
beyond optical diffraction limit, sample is excited by light coming from a wave guide tip with sub-
micron aperture which is scanned over the surface, light coming from the probe is collected in
an optical microscope objective, light
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Imaging Methods: Scan

ning Electron Microscopy (SEM)

scanning of electron beam (0.2 — 30 keV) over a (usually conducting) specimen and detection

of secondary low energy or backscattered
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Imaging Methods: Transmission Electron Microscopy (TEM)

transillumination of a thin specimen (~ 30-100 nm) with high energy electron beam allowing
high resolution imaging or electron beam diffraction in crystalline samples: acceleration voltage
100 keV — A =3.7 pm; 1 MeV — A =0.87 pm
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Imaging Methods: Low Energy Electron Diffraction (LEED)

LEED is used to study the symmetry, periodicity and atomic arrangement of solid crystal
surfaces and thin films. The LEED pattern symmetry, peak position and intensities give direct
information on surface lattice parameters and the position of atoms in the surface unit cell.

LEED principle: low energy electrons (10-500 eV) are impinging onto a substrate surface and
~1 % (high interaction of electrons with matter) are elastically reflected to a phosphor screen, a
diffraction pattern can be observed if lateral order at surface is beyond 20 nm
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Imaging Methods: Field Emission Microscopy (FEM)
and Field lonization Microscopy (FIM)

FEM: to a sharp metal tip (radius <1000 nm) in high vacuum (~10-"" torr) a high
potential (=1.5 kV) is applied, electrons are emitted depending on local work function

(surface structure dependent) and impinge on fluorescent screen in point projection
geometry — spots on screen can be assigned to exposed crystal faces of tip

FIM: to metal tip (r ~10 nm) at ~20 K'in He (or Ne, Ar, H,) atmosphere (down to 101

torr) a potential (<20 kV) is applied (reverse polarity to FEM), gas ions at the surface
- get ionized and accelerated away from tip to phosphor screen in point projection
FEM of crystalline geometry
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