Microcontact Printing (µCP) 1

• Transfer of SAM precursor with elastomeric stamp onto substrate:

 \Rightarrow master generation by **photolithography** and similar techniques:

- stamp is obtained by **casting** of **elastomer** (PDMS, e.g.) over **master**

 \Rightarrow pattern generation by stamping of SAM precursor onto substrate:

Prof. Dr. Ulrich Jonas Macromolecular Chemistry Department Chemistry - Biology University of Siegen

Microcontact Printing (μ CP) 2

Stamped SAM pattern can be further processed by etching or deposition:

 $\Rightarrow \mu CP$ technique can also be applied to **curved surfaces** of stamp or substrate

 \Rightarrow quality of μ CP SAMs is comparable to films obtained by adsorption from solution

solution

stamp

5 nm

stamp

solution

Replica Molding (REM)

Microtransfer Molding (µTM)

• convenient method for fabrication of microstructures on nonplanar substrates and

3D structures layer by layer:

Micromolding in Capillaries (MIMIC)

• 3D microstructure formation by filling of microcapillaries with liquid precursor:

polymer precursor:

- A, C: polyacrylate
- B, D: polyurethane

precursor w/ solvent:

A, B: polymer beads C, D: polyaniline emeraldine · HCl

Solvent-Assisted Micromolding (SAMIM)

 Quasi-3D microstructure formation in polymeric substrates by solvent etching in microcapillaries:

polymer film: **photoresist**, solvent: **ethanol**

Proximal Probe Lithography / Scanning Probe Lithography

- Use of **scanning probe microscopes** for surface **modification** down to the **nm** range:
 - ⇒ electrical methods: scanning tunneling microscope (STM) tip generates local field / current which modifies region under tip (SiH → Si)

⇒ mechanical methods: scanning force microscope (SFM / AFM) tip scrapes or transfers material at the surface

⇒ optical methods: near-field optical
 scanning microscope (NSOM) tip exposes
 photoresist under tip

Embossing

 Rigid master (stamp, Ni or SiO₂, e.g.) is pressed into thermally softened polymer substrate (PMMA, polycarbonate → CD, e.g.) to transfer relief structure to polymer:

 application: microchip for isotachophoresis (electrophoretic separation technique for ionic compounds)

⇒ Microcutting: embossing of metal-coated polymer films creates metallic micro-objects

application: IR-polarizer,
polarization-dependent color filter
(on the right)

Printing (Inkjet)

- Inkjet printer can be used to generate surface pattern with appropriate "ink" (resolution ~50 μ m):
 - resist: by using a resist precursor as ink the mask can be printed directly
 - electr. active materials: "printing" of electronic devices, like thin film transistors (TFT)
 - DNA: generate DNA arrays for sequencing applications
 - **polymers**: printing of polymer precursors for rapid 3D prototyping (layer-by-layer)

