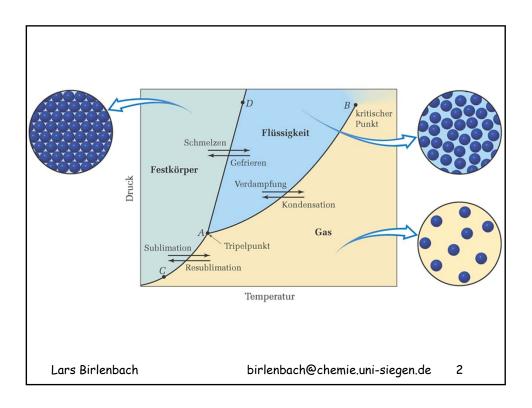
Vorlesung Allgemeine Chemie für DBHS WS 2022/23

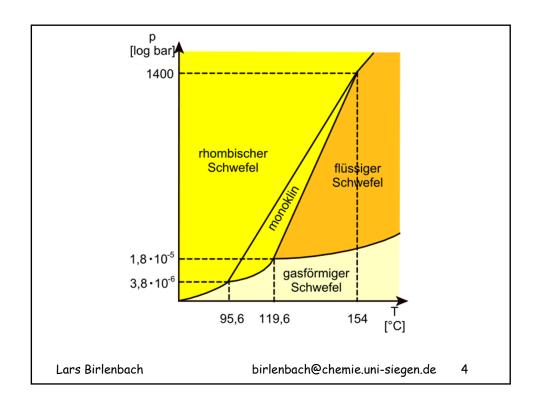
Dr. Lars Birlenbach

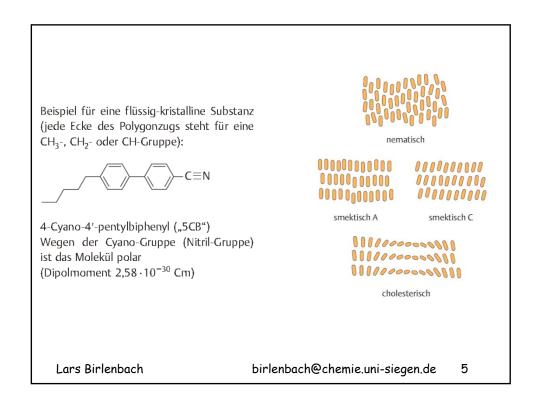
Physikalische Chemie 1 (PC1)

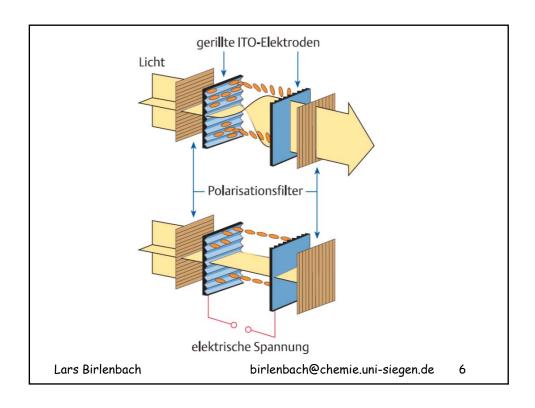
Raum AR-F0102

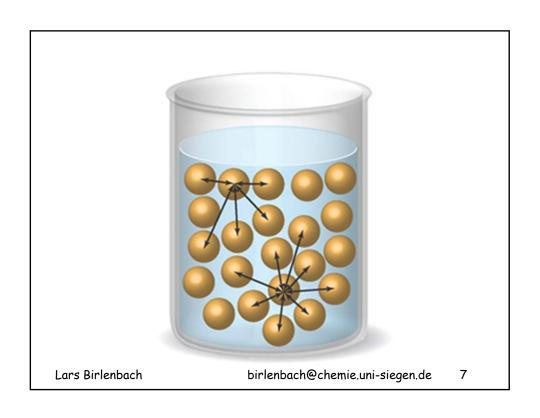
Tel.: 0271 740 2817

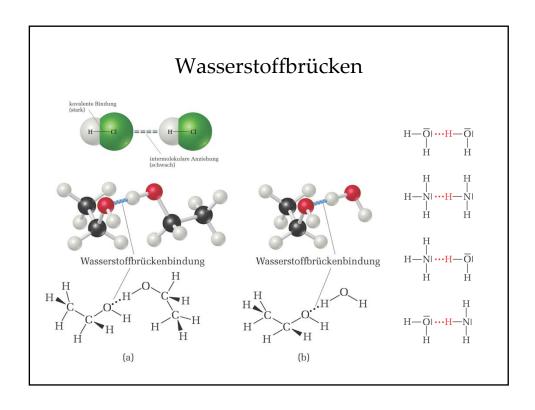

eMail: birlenbach@chemie.uni-siegen.de

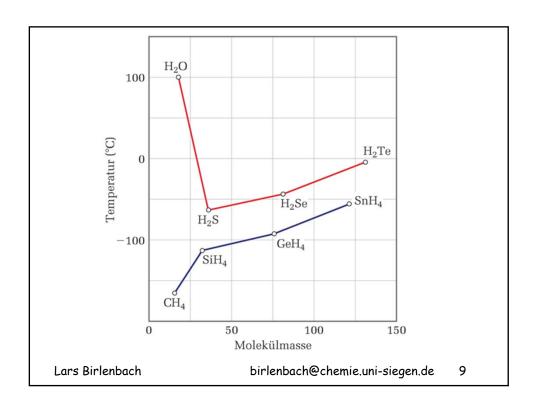

- · Webseite zur Vorlesung (Folien, Übungsblätter):
- http://www.chemie.uni-siegen.de/pc/lehre/dbhs/

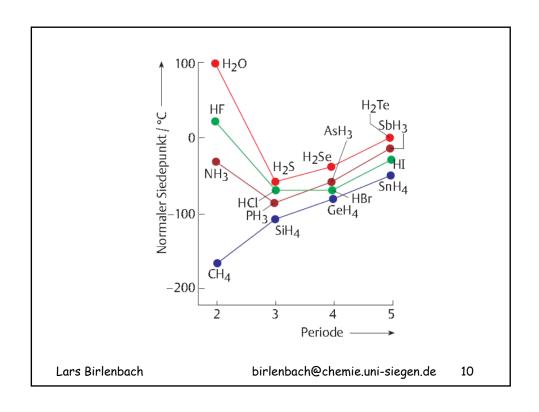

Zugangsdaten:


User: Ludwig Passwort: Boltzmann


Lars Birlenbach@chemie.uni-siegen.de





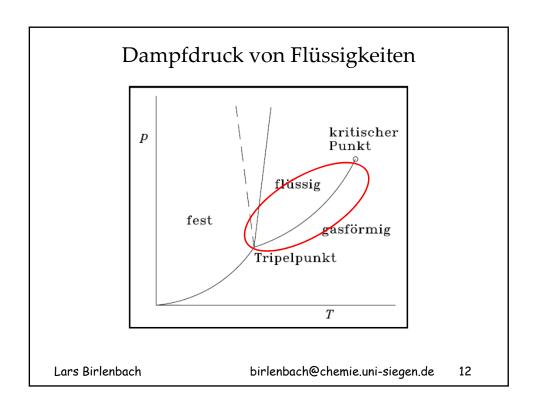


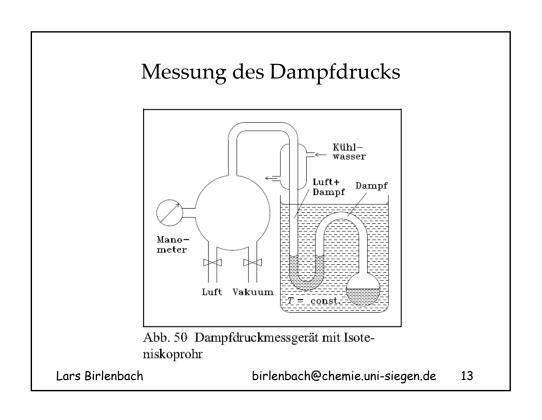
▼ 11.2 Molare Verdampfungsenthalpien von Flüssigkeiten bei ihren normalen Siedepunkten Flüssigkeit molare normaler Siedepunkt Verdampfungsenthalpie ΔH_v °C $kJ \cdot mol^{-1}$ Wasser 100,0 40,7 Benzol 80,1 30,8 Ethanol 78,3 38,6 Tetrachlor-76,7 30,0

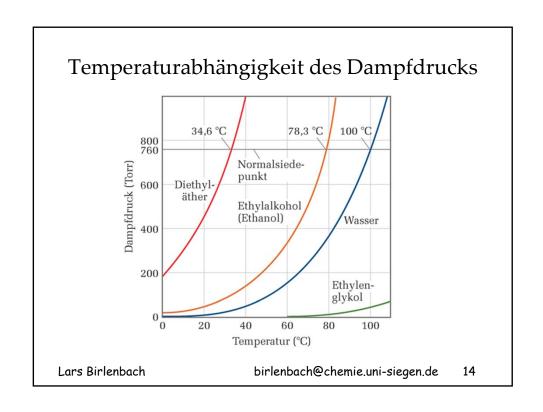
29,4

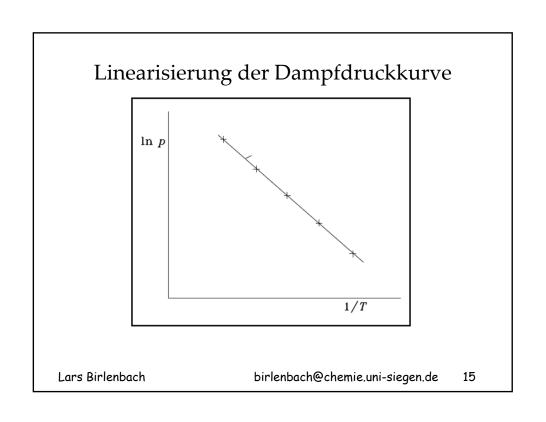
26,0

Lars Birlenbach


methan


Trichlormethan 61,3


34,6


(Chloroform) Diethylether

birlenbach@chemie.uni-siegen.de

 $\ln p = \frac{k}{T} + C \quad \text{Integrationskonstante eliminieren mit} \quad \ln p_0 = \frac{k}{T_S} + C$

$$\ln \frac{p}{p_0} = k \left(\frac{1}{T} - \frac{1}{T_S} \right)$$

Clausius-Clapeyronsche Gleichung (vereinfacht)

$$k = -\frac{\Delta H_V}{R}$$

Wichtige Gleichung:

Bestimmung von ΔH_V , wenn p = f(T) gegeben Bestimmung von p für beliebige T, wenn ΔH_V bekannt

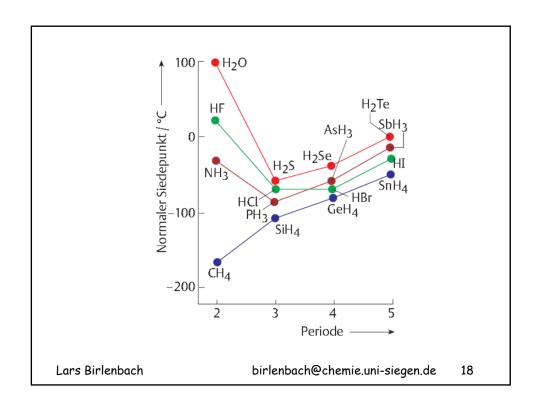
Lars Birlenbach

birlenbach@chemie.uni-siegen.de

16

 $Siedepunkt \\ (Dampfdruck = Umgebungsdruck)$

Substanz	Siedepunkt	Große Unterschiede!			
He	4K	0 14 26 1 7 11			
H₂O	373K	Grund: Kräfte zwischen Teilchen			
W	≈6000K	vdWaals, Dipol-Dipol, Coulomb,			
		Wasserstoffbrücken, metallische Bindung!			


Weitere Unterschiede: Molare Masse

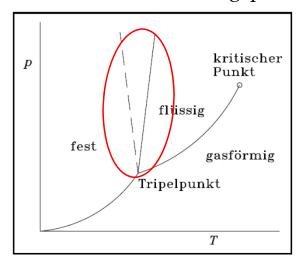
Edelgas	He	Ne	Ar	Kr	Xe	Rn
T _s /K	4	27	87	120	166	208

Alkan	CH ₄	C ₂ H ₆	C ₃ H ₈	C ₄ H ₁₀	C ₅ H ₁₂	C ₆ H ₁₄	Warum?
T_s/K	112	184	231	273	309	342	

Lars Birlenbach

birlenbach@chemie.uni-siegen.de

$$E_{kin} = \frac{mv^2}{2} = \frac{3kT}{2}$$
 schwere Teilchen sind langsamer


Wechselwirkungen (WW) zwischen großen Teilchen sind stärker stärkere WW: höhere Siedepunkte, größere Verdampfungsenthalpie

Zusammenhang zwischen Siedepunkt und Verdampfungsenthalpie?

Pictet-Troutonsche Regel $\frac{\Delta H_V}{T_S} \approx \text{const.} \left(=\Delta S_V\right)$

	Diethylether	Chloroform	Benzol		
T_s [K]	308	335	353	373	
ΔH_V [kJ mol ⁻¹]	26,0	29,4	30,8	40,7	
$\Delta H_V/T_S$ [J mol ⁻¹ K ⁻¹]	85	88	87	109	
Lars Birlenbach		birlenbach@chemie.uni-siegen.de 19			

Schmelz- oder Erstarrungspunkt

Lars Birlenbach

birlenbach@chemie.uni-siegen.de

20

Schmelz- oder Erstarrungspunkt

Auch hier: Starke WW → hoher Schmelzpunkt

Art des Gitters Smp Molekülgitter niedrig

Ionengitter 3-dim Molekülkristall mittel hoch

Molekülbau der Teilchen

• starr - flexibel

· symmetrisch - unsymmetrisch

Benzol Toluol 5 °€ -95 °C

Anthracen
Smp: 217 °C
vgl. Diesel, Heizöl:

auch C_{14} - Moleküle beginnt bei ca. 0 °C

Lars Birlenbach

birlenbach@chemie.uni-siegen.de

Lösungen

• Lösemittel H2O, darin lösen sich:

- Festkörper: NaCl

- Flüssigkeit: Ethanol CO_2 Bier ;-)

auch mehrere Gelöste gleichzeitig möglich

extreme Unterschiede der Löslichkeit in Wasser

Lars Birlenbach birlenbach@chemie.uni-siegen.de 25

Beispiele: Löslichkeit in Wasser

anorganische Festkörper

• BaSO₄ 0,002 g auf 1 kg, 25 °C

• NH_4NO_3 2100 g auf 1 kg, 25 °C

organische Festkörper

• Harnstoff 790 g pro ℓ , 5 °C

1200 g pro ℓ, 25 °C

Paraffin --- (nix)

organische Flüssikeiten

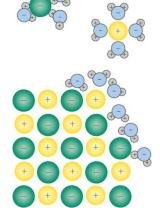
· Methanol, Ethanol, Aceton: mischbar

Octanol
 0,3g pro l, 20 °C

Gase

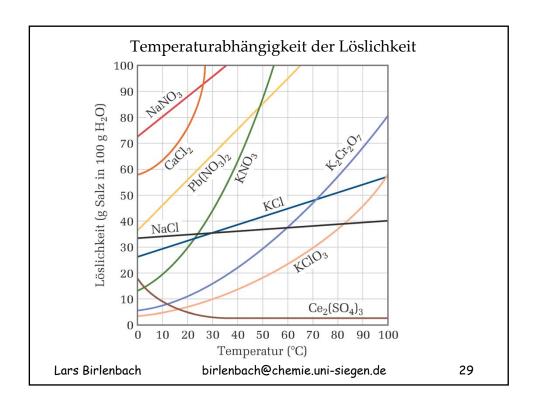
Ammoniak 702 l pro l, 20 °C

• Stickstoff 0,0162 l pro l, bei 20 °C und 1,013 bar


Lars Birlenbach birlenbach@chemie.uni-siegen.de 26

Gründe für unterschiedliche Löslichkeiten?

WW zwischen den Teilchen: Gelöstes, Lösungsmittel, ...


Für Wasser: polare Substanzen und Substanzen mit H-brückenbindungen lösen sich gut. Hydratation!

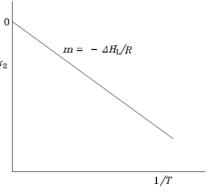
Ähnliche Verbindungen lösen sich ineinander, wenig ähnliche nicht.

Lars Birlenbach

birlenbach@chemie.uni-siegen.de

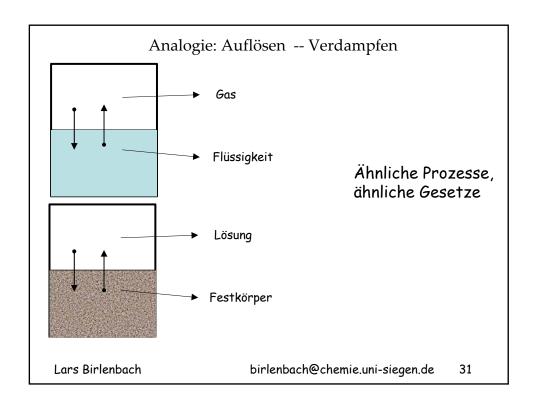
$$Ziel: c_i \text{ oder } x_i = f(T)$$

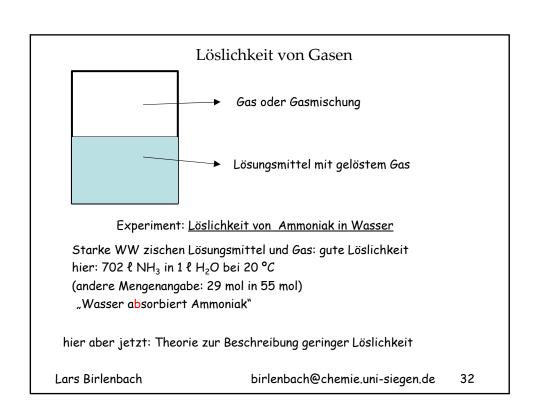
Prinzip von Le Chatelier:

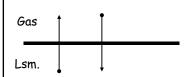

Einfluss der Lösungsenthalpie

 $\Delta H_{\rm L} > 0$: Löslichkeit steigt mit T

 $\Delta H_{\rm L} < 0$: Löslichkeit sinkt mit $T^{-\ln T}$


 $\Delta H_L \approx 0$: Löslichkeit $\neq f(T)$


$$\ln x_i = -\frac{\Delta H_L}{R} \cdot \frac{1}{T} + C$$


Lars Birlenbach

birlenbach@chemie.uni-siegen.de

Mikroskopisches Bild: Löslichkeit von Gasen in Flüssigkeiten

$$\dot{n}_{\downarrow} \propto p$$

Im Gleichgewicht:

$$\dot{n}_{\uparrow} = \dot{n}_{\downarrow}$$

 $\dot{n}_{\uparrow} \propto x$

Im Gleichgewicht: $p \propto x$

$$p = kx$$

Henrysches Gesetz

$$p_i = k_i x_i$$

Henry-Daltonsches Gesetz für Gasmischungen

Die Indizes i sind die einzelnen Gasarten. Jede Gasart befolgt das Henrysche Gesetz, als ob die anderen Gas nicht da wären (nur nichtreaktive Gase!)

Lars Birlenbach

birlenbach@chemie.uni-siegen.de

33

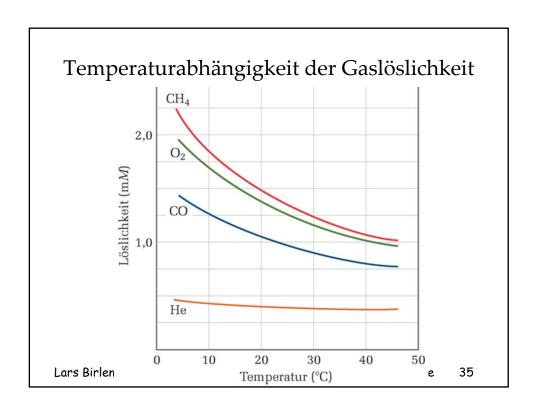
Beispiel: Löslichkeit von O_2 und N_2 in Wasser bei 20 °C und 1,013 bar

$$O_2: x_{O_2} = 2, 5 \cdot 10^{-5}$$

$$N_2: x_{N_2} = 1, 3 \cdot 10^{-5}$$

$$k_{\text{O}_2}: \frac{p_{\text{O}_2}}{x_{\text{O}_2}} = \frac{1,013 \,\text{bar}}{2,5 \cdot 10^{-5}} = 4,1 \cdot 10^4 \,\text{bar}$$

Biologische Bedeutung: Löslichkeit von Sauerstoff


im Wasser: Wichtig für Fische

Medizinische Bedeutung: Löslichkeit von Stickstoff

im Blut: Taucherkrankheit

Lars Birlenbach

birlenbach@chemie.uni-siegen.de

