1. Exercise General Chemistry

WS 2022/23

1.1

How many electrons can be in the shell with the main quantum number n = 6? What atomic number would an element have, in which all shells up to and including n = 6 are fully occupied and there are no electrons in higher shells? Give reasons why such an element does not exist.

1.2

Naturally occurring boron is a mixture of the two isotopes with the mass numbers 10 (mass of atom $m = 1.6624 \cdot 10^{-23}$ g) and 11 ($m = 1.8279 \cdot 10^{-23}$ g), whereby the particle fraction of the first isotope is 19.78 %. Calculate the average atomic mass of the naturally occurring boron. **1.3**

Write down the electronic states of the following ions: Br⁻, K⁺, S²⁻ und Ga³⁺

1.4

Complete the following table:

Element	Ζ	MZ	Np	Nn	Ne
	31	69			31
	53	127			54
Ba ²⁺					
		138			
			13	14	10
Cl				18	

Z: atomic (ordinal) number, MZ: mass number, Np: number of protons, Nn: n. o. neutrons, Ne: n. o. electrons

1.5

Gold crystallizes in a face-centered cubic lattice with the edge length 4.070Å. The density is 19.3g/cm³. Calculate the mass of a gold atom from this information

