Lecture General Chemistry WS 2023/24

Dr. Lars Birlenbach

Physikalische Chemie 1 (PC1)

Raum AR-F0102

Tel.: 0271 740 2817

eMail: birlenbach@chemie.uni-siegen.de

• Website (Slides, Excercises):

• http://www.chemie.uni-siegen.de/pc/lehre/genchem/

Login Data for slides:

User: Ludwig
Passwort: Boltzmann

Lars Birlenbach@chemie.uni-siegen.de

Compression (volume decreases)	Expansion (volume increases)
Work is done by the surroundings on the system, so the sign of w is positive	Work is done by the system on the surroundings, so the sign of w is negative
V_2 is less than V_1 , so $\Delta V = (V_2 - V_1)$ is negative	V_2 is greater than V_1 , so $\Delta V = (V_2 - V_1)$ is positive
$w = -P \Delta V \text{ is positive}$ $(-) \times (+) \times (-) = +$	$w = -P \Delta V \text{ is negative}$ $(-) \times (+) \times (+) = -$
Can be due to a <i>decrease</i> in number of moles of gas (Δn negative)	Can be due to an <i>increase</i> in number of moles of gas $(\Delta n \text{ positive})$
Lars Birlenbach	birlenbach@chemie.uni-siegen.de 4

15-11 Relationship Between ΔH and ΔE

The fundamental definition of enthalpy, H, is

$$H = E + PV$$

For a process at constant temperature and pressure,

$$\Delta H = \Delta E + P \Delta V$$
 (constant T and P)

From Section 15-10, we know that $\Delta E = q + w$, so

$$\Delta H = q + w + P \, \Delta V$$
 (constant T and P)

At constant pressure, $w = -P \Delta V$, so

$$\Delta H = q + (-P\,\Delta V) + P\,\Delta V$$

$$\Delta H = q_p$$
 (constant T and P)

The difference between ΔE and ΔH is the amount of expansion work ($P \Delta V$ work) that the system can do. Unless there is a change in the number of moles of gas present, this difference is extremely small and can usually be neglected. For an ideal gas, PV = nRT. At constant temperature and constant pressure, $P \Delta V = (\Delta n)RT$, a work term. Substituting gives

$$\Delta H = \Delta E + (\Delta n)RT$$
 or $\Delta E = \Delta H - (\Delta n)RT$ (constant T and P)

Table 15-6 Entropy El	ffects Associated v Temperature		ng and Fr $\frac{1}{\Delta S_{ ext{surr}}}$	eezing (Magnitude of $\Delta S_{\rm sys}$) Compared with (Magnitude of $\Delta S_{\rm surr}$)	$\Delta S_{ ext{univ}} = \ \Delta S_{ ext{sys}} + \Delta S_{ ext{surr}}$	Spontaneity
1. Melting (solid \rightarrow liquid)	> mp = mp < mp	+ + + +	- - -	> = <	> 0 = 0 < 0	Spontaneous Equilibrium Nonspontaneou
2. Freezing (liquid → solid)	> mp = mp < mp	- - -	+ + +	> = <	< 0 = 0 > 0	Nonspontaneou Equilibrium Spontaneous
Lars Birlenbach				birlenbach@che	mie.uni-siegen.de	e 12

15-17 The Temperature Dependence

of Spontaneity

$$\Delta G_{
m rxn} = \Delta H_{
m rxn} - T \, \Delta S_{
m rxn} \qquad {
m or} \qquad 0 = \Delta H_{
m rxn} - T \, \Delta S_{
m rxn}$$

$$\Delta H_{
m rxn} = \, T \, \Delta S_{
m rxn} \qquad {
m or} \qquad T = rac{\Delta H_{
m rxn}}{\Delta S_{
m rxn}} \qquad {
m (at~equilibrium)}$$

Lars Birlenbach

birlenbach@chemie.uni-siegen.de

14

 $\Delta G = \Delta H - T \Delta S$ (constant temperature and pressure) 1. $\Delta H = -$ (favorable) $\Delta S = +$ (favorable) Reactions are product-favored at all temperatures 2. $\Delta H = -$ (favorable) $\Delta S = -$ (unfavorable) Reactions become product-favored below a definite temperature 3. $\Delta H = +$ (unfavorable) $\Delta S = +$ (favorable) Reactions become product-favored above a definite temperature **4.** $\Delta H = +$ (unfavorable) $\Delta S = -$ (unfavorable) Reactions are reactant-favored at all temperatures Lars Birlenbach birlenbach@chemie.uni-siegen.de 15

■ Table	15-7 Thermodynamic Classes of Reactions	ΔH	ΔS	
Class	Examples	(kJ/mol)	(J/mol·K)	Temperature Range of Spontaneity
1		-196 -72.8	+126 +114	All temperatures All temperatures
2		-176 -233	-285 -424	$\begin{array}{l} Lower \ temperatures \ (<619 \ K) \\ Lower \ temperatures \ (<550 \ K) \end{array}$
3	$ \begin{array}{l} NH_4Cl(s) \longrightarrow NH_3(g) + HCl(g) \\ CCl_4(\ell) \longrightarrow C(graphite) + 2Cl_2(g) \end{array} $	+176 +135	+285 +235	Higher temperatures (> 619 K) Higher temperatures (> 517 K)
4		+196 +285	-126 -137	Nonspontaneous, all temperatures Nonspontaneous, all temperatures
			oirlenbach@cher	

Hess's Law

• standard enthalpies of formation ΔH_B^{\ominus}

Fe₂O₃ +
$$3$$
 CO \rightarrow 2 Fe + 3 CO₂
 $\Delta H_B^{\ominus}(\text{Fe}_2\text{O}_3)$ $\Delta H_B^{\ominus}(\text{CO})$ $\Delta H_B^{\ominus}(\text{Fe}) = 0$ $\Delta H_B^{\ominus}(\text{CO}_2)$
2 Fe, 1.5 O₂ 3 C, 1.5 O₂ 2 Fe 3 C, 3 O₂

$$\Delta H_{R} = 3 \cdot \Delta H_{B}^{\oplus}(CO_{2}) - 3 \cdot \Delta H_{B}^{\oplus}(CO) - \Delta H_{B}^{\oplus}(Fe_{2}O_{3})$$

$$\Delta H_{R} = 3 \cdot -393, 5 - (3 \cdot -110, 5 - 822, 5) = -26, 5 \text{ kJ/mol}$$

Lars Birlenbach

Lars Birlenbach

birlenbach@chemie.uni-siegen.de

birlenbach@chemie.uni-siegen.de

20

19

Substance	$\Delta H_{ m f}^{ m 0}$ (kJ/mol)	Substance	$\Delta H_{ m f}^0$ (kJ/mol
$\mathrm{Br}_2(\ell)$	0	HgS(s) red	-58.2
$Br_2(g)$	30.91	$H_2(g)$	0
C(diamond)	1.897	HBr(g)	-36.4
C(graphite)	0	$H_2O(\ell)$	-285.8
$CH_4(g)$	-74.81	$H_2O(g)$	-241.8
$C_2H_4(g)$	52.26	NO(g)	90.25
$C_6H_6(\ell)$	49.03	Na(s)	0
$C_2H_5OH(\ell)$	-277.7	NaCl(s)	-411.0
CO(g)	-110.5	$O_2(g)$	0
$CO_2(g)$	-393.5	$SO_2(g)$	-296.8
CaO(s)	-635.5	$SiH_4(g)$	34.0
CaCO ₃ (s)	-1207.0	SiCl ₄ (g)	-657.0
$Cl_2(g)$	0	$SiO_2(s)$	-910.9

