WS 2024/25

Due Jan 30st, 2024, 2pm c.t., AR-H100

3.1

Calculate the mole fraction of sodium hydroxide in a 0.01 molar sodium hydroxide solution.

3.2

Oxalic acid reacts with KMnO₄ to form Mn^{2+} and carbon dioxide. 0.1265 g of oxalic acid $(H_2C_2O_4 \cdot 2 H_2O)$ consume 40.6 ml of a KMnO₄ solution during the titration. What is the concentration of the KMnO₄ solution?

3.3

Complete and balance the following reaction equations:

$$\begin{array}{lll} I_2 + H_2 S & S + I^- \\ Zn + NO_3^- & NH_4^+ + [Zn(OH)_4]^{2^-} & (alkaline) \\ PbO_2 + HI & PbI_2 + I_2 & \end{array}$$

3.4

The half-life period of a 1^{st} order reaction is 1 s. Calculate the 10^{th} life period, i.e. the time when only 1/10 of the starting concentration is still there. What is the relationship between half life time and n^{th} life time?

3.5

Nitrosyl chloride decomposes in the gas phase to NOCl NO + $\frac{1}{2}$ Cl₂. At 180° C, the following NOCl values for partial pressure are found as a function of time:

t/s	0	500	1000	1500	2000	2500
p/Torr	500	413	351	306	271	243

Does the decay occur after a 1st or 2nd order reaction? Determine the reaction rate constant.

3.6

For a reaction, the following reaction rate constants are determined as a function of the temperature:

t/°C	25	35	45	55
k/s ⁻¹	1	1,30	1,66	2,09

Calculate the activation energy.

3.7

 $80.1~g~SO_3$ is introduced into an evacuated reaction vessel with a volume of 1 dm³ at an elevated temperature. The equilibrium mixture contains only half of the SO_3 introduced. What is the equilibrium constant K_c of the SO_2/SO_3 equilibrium $SO_2 + \frac{1}{2}O_2 \leftrightarrow SO_3$?