Hinweise zum Einsatz der Google Suche
Personensuchezur unisono Personensuche
Veranstaltungssuchezur unisono Veranstaltungssuche
Katalog plus

Selected publications


  1.  K. M. Schneider, K. Giehl and S. A. Baeurle, Development and application of an agent-based model for the simulation of the extravasation process of circulating tumor cells, Int. J. Numer. Meth. Biomed. Engng. 39(4), e3679 (2023); doi: 10.1002/cnm.3679

  2. T. Thaingtamtanha and S. A. Baeurle, Study of protease-mediated processes initiating viral infection and cell-cell viral spreading of SARS-CoV-2, J. Mol. Model. 28, 224 (2022); doi: 10.1007/s00894-022-05206-8

  3. S. Donets, A. Pershin and S. A. Baeurle, Computation of full polymer-based photovoltaic nanodevices using parametrized field-based multiscale solar-cell approach, Org. Electron. 22, 216-228 (2015); doi: 10.1016/j.orgel.2015.03.049  

  4. A. Pershin, S. Donets and S. A. Baeurle, Photocurrent contribution form intersegmental mixing in donor-accepto-type polymer solar cells: A multiscale simulation study, Polymer 55, 3736-3745 (2014); doi: 10.1016/j.polymer.2014.06.038  

  5. E. Peter, B. Dick, I Stambolic and S. A. Baeurle, Exploring the multiscale signaling behavior of phototropin1 from Chlamydomonas reinhardtii using a full-residue space kinetic Monte Carlo molecular dynamics technique, Proteins 82, 2018-2040 (2014); doi: 10.1002/prot.24556

  6. A. Pershin, S. Donets and S. A. Baeurle, Performance enhancement of block-copolymer solar cells through tapering the donor-acceptor interface: A multiscale study, Polymer 55, 1507-1513 (2014); doi: 10.1016/j.polymer.2014.01.052

  7. A. Pershin, S. Donets and S. A. Baeurle, A new multiscale modeling method for simulating the loss processes in polymer solar cell nanodevices, J. Chem. Phys. 136, 194102 (2012); doi: 10.1063/1.4712622

  8. E. Peter, B. Dick and S. A. Baeurle, A novel computer simulation method for simulating the multiscale transduction dynamics of signal proteins, J. Chem. Phys. 136, 124112 (2012); doi: 10.1063/1.3697370 

  9. E. Peter, B. Dick and S. A. Baeurle, Mechanism of signal transduction of the LOV2-Jα-photosensor from Avena Sativa, Nat. Commun. 1, 122 (2010); doi: 10.1038/ncomms1121

  10. S. A. Baeurle, M. G. Kiselev, E. S. Mackarova and E. A. Nogovitsin, Effect of counterion behavior on the shear-compressive properties of chondroitin sulfate solution, Polymer 50, 1805-1813 (2009); doi: 10.1016/j.polymer.2009.01.066

  11. S. A. Baeurle, T. Usami and A. A. Gusev, A new multiscale modeling approach for the prediction of mechanical properties of polymer-based nanomaterials, Polymer 47, 8604-8617 (2006); doi: 10.1016/j.polymer.2006.10.017

  12. S. A. Baeurle, A. Hotta and A. A. Gusev, On the glassy state of multi-phase and pure polymer materials, Polymer 47, 6243-6235 (2006); doi: 10.1016/j.polymer.2006.05.076

  13. S. A. Baeurle, A. Hotta and A. A. Gusev, A new semi-phenomenological approach to predict the stress relaxation behavior of thermoplastic elastomers, Polymer 46, 4344-4354 (2005); doi: 10.1016/j.polymer.2004.07.034

  14. S. A. Baeurle, G. H. Fredrickson and A. A. Gusev, Prediction of elastic properties of a poly-(styrene-butadiene-styrene) copolymer using a mixed finite element approach, Macromolecules 37, 5784-5791 (2004); doi: 10.1021/ma035528d

  15. S. A. Baeurle, Grand canonical auxiliary field Monte Carlo: a new technique for simulating open systems at high density, Comput. Phys. Commun. 157, 201-206 (2004); doi: 10.1016/j.comphy.2003.11.001

  16. A. G. Moreira, S. A. Baeurle and G. H. Fredrickson, Global stationary phase and the sign problem, Phys. Rev. Lett. 91, 150201 (2003); doi: 10.1103/PhysRevLett.91.150201

  17. S. A. Baeurle, Computation within the auxiliary field approach, J. Comput. Phys. 184, 540-558 (2003); doi: 10.1016/S0021-9991(02)00036-0

  18. S. A. Baeurle, The stationary phase auxiliary field Monte Carlo method: a new strategy for reducing the sign problem of auxiliary field methodologies, Comput. Phys. Commun. 154, 111-120 (2003); doi: 10.1016/S0010-4655(03)00284-4

  19. S. A. Baeurle, Method of Gaussian equivalent representation: a new technique for reducing the sign problem of functional integral methods, Phys. Rev. Lett. 89, 080602 (2002); doi: 10.1103/PhysRevLett.89.080602

  20. S. A. Baeurle, R. Martonak and M. Parrinello, A field-theoretical approach to simulation in the classical canonical and grand-canonical ensemble, J. Chem. Phys. 117, 3027-3039 (2002); doi: 10.1063/1.1488587